京公网安备 11010802034615号
经营许可证编号:京B2-20210330
当大数据即Big Data与云计算、移动应用与社交网络,风靡一世,成为2012 年信息技术领域最时髦的词汇。IBM 、Oracle、SAP、微软等厂商,像寻找到了新的金矿,开始极力推崇大数据理念。于是,众厂商蜂拥而至,抢夺大数据市场,尤其是SAP的HANA和Oracle的Exalytics,打得火热。相比之下,部分推BI的厂商还达不到大数据的层次,固守在报表分析的阵地上。事实上,大数据真的有如我们想象中的那么强大吗?BI为什么跑不出“最后一公里”?大数据与BI同时遭遇了被质疑的尴尬。
BI为什么不能快速踏入大数据时代?
一个刚入行的BI咨询师的困惑,或具有一定的代表性,表达了BI当前的状态。
“今天跟客户演示系统,演示完毕,客户问我一个问题:商业智能到底智能在哪里?BI和报表工具做出来的东西有何不同?对于这个问题,我相信做BI的人都曾经问过自己,也给过自己很多答案,但未必真的是100分的答案。就像今天,我虽然跟客户举了一些例子解释和说明上述问题,但是自己还是觉得不够透彻和有说服力。造成这个问题,我想重要的原因是BI本身范围太广,加之现在市场上的各种报表工具都自称BI解决方案,各种项目都往BI上靠,使得BI的概念很模糊了。第二个原因,大部分BI项目其实本质需求就是满足数据的一个查询和报表报告,到底是BI,还是其他什么概念都不重要。”
BI的概念过于泛泛,以至于在几年前,很多企业认为BI可有可无。近年来,大数据给BI带来了极大的冲击,加速了其发展的步伐,甚至有人大胆预测,未来十年,商务智能分析将引领管理信息化的发展。
BI与大数据的区别在于,大数据能够基于BI工具进行大容量数据和非机构化数据进行处理,与传统基于事务的数据仓库系统相比较,大数据分析不仅关注结构化的历史数据,它们更倾向去对Web、社交网络、RFID传感器等非结构化海量数据进行分析,大数据无疑是对BI的一个完美补充。
那么,为什么大部分BI厂商对于大数据表现出“冷处理”态度?
原因一:不论是大交互数据还是大交易数据,处理并分析非结构化数据,是BI业内,甚至是大数据处理,一直面临的难点。很多推BI产品的厂商,其技术能力达不到大数据所要求的高度。
原因二:现在很多的企业做的BI,并没有完全体现智能,最多只是将已有的数据使用报表进行呈现,开发的报表也很简单,大部分用户还没有希望从开发的BI系统中,发掘更多价值的意识。
原因三:大数据的确会有价值,但这个价值有多大,没办法准确衡量。从某些大数据中会挖掘出新的价值,但这个价值只是附加价值,是一个想象的空间。就比如沙漠里可能有金子,但并不是说沙漠中一定就能挖出金子。
大数据如何摘下“新瓶旧酒”标签?
有人评价“大数据是个相对的概念,是新瓶装旧酒。”认为,传说的大数据处理方式,只不过是为赶时髦,在既有的方案上包装了一下,新瓶装旧酒。海量数据时代并没有给多少企业带来革命性的变化,在 MapReduce 以及 Hadoop 出现之前,也有企业能够轻松的对数据进行大规模并行计算,而 NoSQL 的出现也只是为处理数据的方式带来了更多可能性。
所以,从结果来看,对于大数据的质疑并没有比BI少,同样遭遇了“还差一公里”的尴尬。
大数据分析缺乏成熟的实践经验,其方式方法与传统的数据仓库与BI系统有着一定的区别。在实施大数据分析项目之前,企业不仅应该知道使用何种技术,还应该知道在什么时候、什么地方使用。各数据之间有哪些关联性?哪个数据是可信的?如何从海量的数据中挖掘出有价值的、易用的客户信息?
要回答这些问题,企业需要一个单一、完整、可信的客户数据视图,而创建一个单一、完整、可信的客户数据视图,数据集成是关键。没有集成的数据,其商业价值为零。数据集成让组织机构能够将传统的交易数据与全新的交互数据组合起来,从而获得在其他情况下无法达成的洞察力和价值。
可以确定的是,随着互联网技术的发展,未来的大数据时代,一定是各种信息呈现规模快速增长的状态,如何更快获取有用的信息是关键,智能分析工具会变得越来越重要,可以凌驾于多个管理系统、数据库之上,如何通过更灵活、可控的BI工具,真正挖掘出大数据时代的价值,是大数据和BI面临的共同挑战。CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09