京公网安备 11010802034615号
经营许可证编号:京B2-20210330
怎么分析产品运营中的数据?
今天我们说说浅谈产品运营四要素最后一个要素,数据分析;说到数据分析,相信不论是做产品运营、用户运营或是推广的小伙伴来说都不陌生,数据分析能充分反映出你运营做出来的效果如何?并且通过它还能察觉出问题所在,以便于及时找出解决问题的方法。
在前面我们说到产品、用户、渠道,每个要素都有它对应的数据指标进行效果反馈,如果纯讲概念方面的东西,相信大家不是很明白,那我们通过一个案例进行说明;比如老板交给你一个资讯类APP的项目,他在给你下达任务前,APP还处于想法阶段,那么这个时候你怎么办?这个时候做为数据分析师的你就需要运用数据分析来帮助你完成这项工作:
做这款APP之前,我们要先明白商业目标是什么,也就是我们做这款产品的目的是干嘛?这个很好理解,建立庞大用户群争抢风投融资和相关的增值服务(指广告服务),那我们有了这个目标后,就可以进行下一步了。下一步是什么,当然是竞分析和市场调查,通过这两方面内容的获取APP相关的需求,需求中包括用户人群、兴趣爱好、终端设备、内容方向等需求定位,然后便可以进行下一步用户体验布局和原型图的设计;后面的事就是技术开发的活了。经过一段周期后,这款资讯APP即将上线了。
前期的工作或许和数据分析关系不大,但是我们制定的目标和数据分析有一定的关联,因为目标是我们通过数据分析优化和改进的方向。当然上线之后,我们会经过各种测试和bug的修复才能到各大应用商店进行推广和宣传,以确保这款APP到用户手机用户体验是最好的。后续通过一段时间运营和推广,我们将相关的数据提取出来,前提是这些数据精准度是非常高的。下面我们先从这款APP提取相关数据进行分析:
一、产品方面数据项: 核心指标:
产品规模:包括下载量、注册激活用户数、日均活跃用户数市场运营:包括活跃用户比例、用户主要来源、留存率商业效果:日均流水、增值用户转化率、增值服务金额等
衍生指标:
浏览方向:人均浏览量、人均浏览时长、启动次数、访问频率注册方向:每日下载打开APP数、每日新增注册数、注册转化率留存方向:使用留存、购买留存互动方向:每日评论用户数、交互反馈次数(收藏、分享、喜欢等功能)
二、渠道方面数据项:消费数据:消费、展现量、点击数、平均点击价格、平均排名流量数据:访问次数、访客数、IP数转化数据:转化率、盈收额、ROI
三、用户方面数据项:用户体验数据:跳出率、到访率、停留时长、访问深度访客属性:性别、职业、学历、年龄、地域、使用设备、操作系统
当我们拿到以上三方面的数据后,当然这里的工作是数据分析师专员要做的内容,而且是每天都需要做统计,并且要保证数据的准确性。
下面我们说说分析数据的几种方法,我在推广运营的经验已经有5年,用的最多两种方法分析是图表对比分析和归因分析。
图表对比分析,这种方法是先将批量或者某个时段的数据生成图表,这里图表有很多种,有饼图、柱状图、曲线图等,可以根据数据需求方的需求而来。虽然图形不一样,但都能反馈出相同的问题,这个是关注的核心点。
那么怎么进行对比呢?对比不是让你口头上去做对比,而常用的是环比和同比,当然数据比较敏感的可能不需要通过图形就能看出问题,但是为了直观和容易理解,图表的生成是非常有必要的。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30