京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Teradata天睿公司在第12届数据仓库暨企业分析峰会召开之际, 和新闻媒体进行了沟通。沟通围绕着企业如何充分利用最新数据仓库和企业分析技术,借助新数据源所提供的洞察力,快速制定最佳业务决策,把握商业先机等主题进行。
Teradata总裁兼首席执行官迈克尔.科勒
Teradata天睿公司首席技术官宝立明(Stephen Brobst)指出:"以前,建立数据仓库的主要目的是为大型企业的业务人员提供智能。现在,一种新型消费者正在兴起,他们热衷于自己动手(DIY)使用技术工具,利用数据来制定个人决策达到了空前的高水平。移动设备的普及和消费行为的变革催生了市场对消费智能的需求,消费者希望直接访问数据,制定相应决策。因此,数据仓库的部署对于这一新兴市场具有重要意义,截至目前,Teradata天睿公司在消费智能方面已经积累了一定的成功经验。"
Teradata数据仓库暨企业分析峰会已经成功地举办了12年,已经渐渐演变成行业人士期待的年度盛事。本届峰会上,将有超过500名来自全球通信、金融、制造、媒体与娱乐、保险与医疗、零售和电子商务等行业的领导厂商嘉宾、Teradata天睿公司的合作伙伴和高层齐聚苏州。同时,eBay、加拿大皇家银行、思科、Verizon、LinkedIn、DHL、可口可乐、国航和内蒙移动等国际知名企业的嘉宾将发表精彩演讲,分享他们在数据仓库、大数据分析和整合营销分析应用的成功经验。
去年收购了专注于整合营销管理和大数据分析的两家厂商--Aprimo和Aster Data之后,Teradata天睿公司作为全球领先的数据仓库、大数据分析和整合营销管理解决方案行业领导者的地位进一步得到巩固。值此峰会之际,Teradata天睿公司将与众多获邀厂商共同探讨数据仓库和企业分析领域的市场需求、技术热点和发展方向,包括大数据分析、云计算技术、新数据源管理和消费智能等行业热点及趋势性问题,深入剖析企业如何尽享数据价值,获取敏锐的洞察力,打造自身核心竞争优势,在激烈的市场竞争中立于不败之地。
Teradata天睿公司总裁兼首席执行官迈克尔.科勒(Mike Koehler)表示:"在过去的几年中,越来越多的企业已经将提升数据分析能力作为发展重点。随着当今数据量和新数据类型的不断增加,企业意识到来自大数据和新型数据分析的挑战和机遇,Teradata天睿公司致力于与客户密切合作,通过提供最佳的数据战略、架构和先进技术应对大数据分析的挑战,并帮助企业以最具成本效益的方式从现有新的数据源(如移动设备、传感器和社交网络)中获取洞察力,从而预测市场需求,指导业务决策的制定,提升竞争优势。"
在大中华区市场,伴随着社交媒体、物联网和电子商务的蓬勃发展,社会化数据涌现,结构化数据和非结构化数据并存,大数据分析的难度巨大;在市场营销方面,云、移动设备、社交网络正在影响企业理解客户和与客户互动的方式,企业需要及时掌握客户动态并做出有效响应。Teradata天睿公司大中华区首席执行官辛儿伦先生提到:"整个海量信息的发展历程, 从支持企业流程的企业资源计划系统,客户关系管理应用等等,到近几年来我们看到更多以用户为驱动的多元化数据,信息经历了从交易到交互的演变过程。在这个过程当中,多维度的信息结构,复杂的数据来源,广泛的业务范围,和数据治理的难度等等,确实带给企业信息从业人员相当的挑战。
企业通过正确的方法,有效地建立信息整合能力, 信息探索能力,并基于实时数据分析制定精确行动计划的能力,企业能够转化挑战成为机遇。 Teradata天睿公司及其子公司--Aprimo和Aster Data员工希望以先进的数据库软件、企业级数据仓库、数据仓库专用平台、咨询服务及企业分析方案带给更多大中华区客户,协助企业激发商业潜能,提升竞争力。"
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21