京公网安备 11010802034615号
经营许可证编号:京B2-20210330
编译 | secretplanet
来源 | blogs.hbr.org
为一个受过专业培训的数据工作者,我是早先加入贝尔实验室网络性能组的人员之一。此后的一两年左右,我开始了数据汇报。我的第一次大型数据汇报是在AT&T(美国电话电报公司)总部。在提前做了充分的准备和细致的演练的情况下,我前去赴会。
我的展示糟糕至极,没有给人留下任何好印象。那时的我年轻气盛,将责任归咎于他人,甚至包括听取汇报的观众。我说:“这里的部门经理甚至看不懂一张饼图。”
一位听取过众多类似汇报的资深人士对我的表现大跌眼镜,他对我如是说,“当然看不懂,汤姆,他们不需要看懂,让他们明白数据的含义是你的工作。”
那是我在展示数据的第一个经验。一个数据分析汇报工作者面临一项艰难的任务,即让他人明白并相信数据的含义,并且要照顾到听众的专业背景,以易于听众理解的方式展示汇报数据。最好的方式就是将数据划分层次,并配上通俗易懂的解释说明。正如爱德华·塔夫特所建议的,<用生动有力的方式讲解数据>标记轴线,不要曲解数据的含义,同时将非相关信息图表减至最少。
基本的图表分析汇报可以以这样的方式开始,“这是我们的数据质量项目报告,它以时间为序,虽然有听众对这些图表再熟悉不过,但也请确保我们的进度一致。如大家所见,这份汇报是关于客户数据质量的。X轴是时间轴,每个点代表一个月,Y轴是数据分数,与每个点的月份恰好对应。我们以此来衡量精度。这是一个较高的标准,对此我一会儿将详述。”之后便是为听众解释如何读懂展示的图表。“绿线代表实际结果,蓝线是我们设定的目标值,红线代表限度,在我进一步解释汇报这些数值前,大家对如何读这张图表是否还有疑问?”
记录下你将要给听众详述的部分之前,确保已经给听众解释清楚了如何读图的基本信息,这样听众就可以专注于所见的图表,并专心听你的数据汇报了。
关于这些,要讲的有很多,譬如如何开始项目、开展项目的原因,围绕客户需求条款的乐趣和挑战所在;客户需求的衡量标准,包括Y轴度量选择的逻辑;项目改进;如何确立限度,即红线的本质含义;为听众点明你所进行的每一个环境的意义影响……
听众不同,需求不同,汇报人的阐释要尽可能简明扼要。比如,技术团队希望搞清楚选择度量的细节和制作图标的软件;高层领导想要明白扩展数据对于整个机构的意义。汇报对于每个听众是一样的,但却听众的需求却各有侧重。
要清楚很多人对于数据分析,数据库和统计数据是持怀疑态度的,(你可能会想到那句有名的谚语:“世界上有三种谎言,即谎言,该死的谎言和统计数据。”)不管这样的怀疑是否有道理,它确实使得机构运行好创意的脚步放慢甚至终止。作为一名数据汇报者,肩负着让听众信任数据的神圣使命。汇报人一定要做到:
1、汇报尽可能准确、直白,特别是在汇报成果不利的情况下,更应如此。此外,如果数据结果显得有点不太明智,一定要简单地陈述事实。
2、如果展示的是一张综合性图表,对于重要信息的遗漏就等于是在说最糟糕的谎言。
3、提供适当的背景介绍,如数据来源,为确保数据真实有效所做的工作。(如果对此所做之事甚少,一定要言简意赅地说明“数据来源不明,可能会影响到结果”)
4、总结数据分析,包括汇报结果的不足之处和替代说明。
陈述自己的观点无可厚非(通常也是合理的),但一定要将自己的观点和事实分开。不论分析有多到位,总有言过其实的地方,直觉会混淆事实。要清楚两者之间的界限。
现在更进一步关注听众需求。成功的汇报案例大多是以让听众明白幻灯片展示内容为基础。听众在观阅连续播放的幻灯片时,可能无法从你的汇报中有所收获,所以你必须考虑到他们的需求。早先在贝尔实验室时,我曾听说“听众读表的平均时间在15秒,不要让他们花费13秒去搞懂如何读图。尽可能多地在可以标记的地方加上注释,能让图表替你说话更好。”
根据此想法,进行两个步骤。第一,在幻灯片说明页提供如何读图的解释。第二,如下图所示为图表注解。注释当然不可能取代汇报,它们只是为听众提供相关信息。
对于大多数听众来说,即便是为微小的洞察做出长篇大论的分析也在所不惜。因此,手边的一张切中问题要害并能引导后续步骤的出色图表要胜过万千无用的图。找到这样出色的图,以此来展示,数据就是力量。
只要你有值得分享的见解和结论,我所建议的方法并不难于实践。领导们,甚至是那些对数据持怀疑态度的人们,迫切期待改善提升部门和公司的方法。作为一名汇报人,你的工作就是以最简明的方式发掘并满足他们的需求。
end
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30