
来源 | 36大数据
根据麦肯锡2011年发布的一份研究报告,到2018年世界范围内将会出现高达140,000 至190,000的“大数据”岗位空缺:各行各业已经积累起来大量的数据分析需求,但市场上具备使用、分析和让数据说话能力的人才供不应求。
2015年马上就要过去了,在这一年里,“大数据”相关职业在全球就业市场的情况到底如何?我们通过WANTED Analytics和福布数据分析斯杂志刚刚公布的2015年数据为大家进行一些总结。
那些“大数据”岗位在哪里?
WANTED Analytics公司专注于就业市场数据分析,其数据库包含来自150个国家的10亿个岗位信息,在这次统计过程中,其将“大数据”定义为数据分析、数据采集、数据挖掘和数据结构四类技能。在对过去12个月美国就业市场“大数据”相关岗位的分析中发现:
就岗位数量而言,需要“大数据”技能的岗位空缺呈现高速增长,如下图所示,其中“大数据”解决方案的销售人员、计算机系统分析师、管理分析师、IT项目经理、和信息安全分析师岗位的增幅都在100%以上。这一增长趋势也将延续至2016年。
Source: Wanted Analytics & Forbes.com
就招聘企业而言,易安信、IBM、思科、甲骨文在2015年招聘的“大数据”人才最多。其他前十的企业信息如下:
Source: Wanted Analytics & Forbes.com
“大数据”岗位需要学什么专业?
首先具有相关背景的本科毕业生或职业人士通过短而实用的数据分析课程,能够迅速满足相关企业的岗位空缺,因而非常抢手。
其次想要在本科阶段开始为自己进入“大数据”领域打好基础的话,主要可以通过在学习三个传统学科专业(数学和统计、计算机科学、商科)的基础上选修培养相关技能的课程来满足就业市场的需求。目前大部分的“大数据”从业人员并不具备数据分析的学位,而是具备了相应的技能。
就数学和统计专业而言,目前绝大多数的数据科学家是数学和统计专业背景,所以你选择的学校可能并没有所谓“数据分析”这个专业,但是其数学和统计专业很可能有开设一系列课程帮助你培养大数据分析的能力,甚至还会建议你去选修一些外系的编程或市场营销课程来丰富你的技能组合。
另一个进入大数据领域的方式是学习计算机科学专业,这一路线将会侧重于学习大数据采集和分析的技术问题。
目前市面上许多的大数据技术如MapReduce, NoSQL, and Hive就是来源于软件工程师的发明创造。所以如果你对计算机科学感兴趣,又想在毕业后从事大数据相关岗位,你可以在本科阶段侧重于对人工智能、机器学习和数据理论的学习。
最后一个和大数据领域密切相关的本科专业是商科下面的“管理信息系统(management information systems)”或“计算机信息系统(computer information systems)”专业。
如果说计算机科学专业的学生研究的是如何让大数据技术变得更快更好,那商科学生学习的就是如何用大数据技术去为企业赢得利润,因此更关注的是如何把大数据技术与市场营销、产品定位和购买模式等等结合起来。
与此同时,越来越多的商学院开始开设专攻商业数据分析的本科和研究生项目,尽管不像计算机科学专业对于理工科知识有那么高的要求,但是还会涉及一定的数据库设计、分析和编程,以及相关统计软件如Hadoop和SAS的使用。
End
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04