京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据创业的五点须知
大数据是当今最热门的科技词汇,同时也是最困难的创业项目。CSC对Infochimps的收购表明,那些无法顺利拿到第二轮融资的大数据创业公司面临着要么关张,要么被人收购的命运,例如Drawn to Scale、Ravel Data和Nodeable等,当然还有很多很多大家没有注意到的大数据创业公司。
Gigaom作者Derrick Harris近日就大数据创业公司的成长和融资问题撰文指出,大数据创业公司要想生存发展并赢得投资人的芳心必须注意一下几点:明智地选择你的战场和目标用户并围绕你的技术建立社区。大数据需要的不是啦啦队,而是实干家。Harris的观点可以归纳为五点,IT经理网摘译整理如下:
1.基础设施非常难
不仅开发基础设施技术产品很难,销售起来也很难,具体到大数据基础设施工具如Hadoop、NoSQL数据库和流处理系统则更是难上加难。客户需要大量培训和教育,付费用户需要大量支持和及时跟进的产品开发工作。
这意味着需要大量的资金支持,例如Greenplum在2010年获得1亿美元投资但仍然不足以完成所有工作,最终不得不选择卖给EMC。今天最出名的几家大数据创业公司融的钱更多,例如Cloudera。基础设施类的大数据创业公司通常需要数百万美元种子资金启动,但是A轮融资的道路异常艰辛。
新兴的大数据创业公司还必须与那些在客户那里已经有一些知名度甚至合作项目的公司竞争,例如Cloudera、Hortonworks、10gen、亚马逊AWS、IBM、Oracle等。
反观大数据应用创业则相对简单的多,无论面向垂直行业应用还是数据可视化这样的通用大数据应用都是如此。因为这些大数据应用的价值对于客户来说更为直观,距离业务也更近,进入企业IT系统的摩擦也更小。
2.云计算是朋友
无论你是销售大数据基础设施还是应用,云计算都是更有效的业务载体。选择云计算不仅仅是在云端托管,更重要的是通过云计算向客户提供服务。你将拥有更多控制权,同时在有限的资源上优化运行也会让你对产品的理解更加透彻。
云计算也降低了潜在用户试用产品的成本和门槛,从NewRelic到亚马逊AWS都从云计算+大数据模式中获益。
3.开发者是朋友
如果你主要从事大数据分析,例如ClearStory、Platfora或者CRM营销应用,数据分析师就是你的朋友。无论那种情况,最好的办法就是围绕以开发者和市场人员为主的目标受众进行开发和营销工作,CIO反而不是很好的目标受众!
专注CIO而非开发者往往会导致你在实际签约时碰到棘手问题。围绕开发者营销的战术被很多云计算创业公司和纯大数据软件公司所采用,例如Splunk和Tableau。
再比如Infochimps和Continuuity的产品类似(两者都被迫按落云头,迫降在用户数据中心),但Continuuity完全面向开发者,这意味着能积累更多技术粉丝。
4.将数据科学家推向前台中央
这既是市场也是销售策略,数据科学家才是能够展示数据和平台威力的人,他们也是会议上最受欢迎的演讲者。
但大数据科学家也需要慎重选择传播内容。如今大家都接受了Hadoop和NoSQL,所以没必要每次开会言必称4V之类的科普。至于如何配置和集成大数据系统也只能吸引小部分听众,除非你的项目规模超大。
Cloudera比竞争对手出名的原因有很多,但其中Jeff hammerbacher绝对是一位举足轻重的人物。不要空谈大数据大数据的价值和架构,站在听众的立场说说具体能做哪些分析,如何做。
5.开源有多重要,取决于你自己
几乎所有的大数据公司都依赖开源软件,有些是“借”来的,如Hadoop、Storm以及各种数据库,有些是自行开发的,有些则是混合模式,例如在HBase上增加的一些功能应用。这些开源项目如此流行是因为社区的力量。
开源绝不是看起来那么轻松,不是说你在Github上放点代码就谈得上回馈社区了。开源的目的是将使用相同代码的人聚拢成社区,并不断改进代码。这里与第三点中我们提到的吸引开发者有关。只有更多的用户和开发者对你产生兴趣了,在你的产品上花时间和精力了,才有可能最终掏钱。
不计其数的创业公司都将代码开源了,但那些真正能推动项目并建设社区的公司才能脱颖而出。例如Neo Technology的Neo4j、Concurrent的Casading以及10gen的MongoDB。甚至Twitter这样面向大众的公司都开源了Storm和Mesos等项目。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11