
大数据创业的五点须知
大数据是当今最热门的科技词汇,同时也是最困难的创业项目。CSC对Infochimps的收购表明,那些无法顺利拿到第二轮融资的大数据创业公司面临着要么关张,要么被人收购的命运,例如Drawn to Scale、Ravel Data和Nodeable等,当然还有很多很多大家没有注意到的大数据创业公司。
Gigaom作者Derrick Harris近日就大数据创业公司的成长和融资问题撰文指出,大数据创业公司要想生存发展并赢得投资人的芳心必须注意一下几点:明智地选择你的战场和目标用户并围绕你的技术建立社区。大数据需要的不是啦啦队,而是实干家。Harris的观点可以归纳为五点,IT经理网摘译整理如下:
1.基础设施非常难
不仅开发基础设施技术产品很难,销售起来也很难,具体到大数据基础设施工具如Hadoop、NoSQL数据库和流处理系统则更是难上加难。客户需要大量培训和教育,付费用户需要大量支持和及时跟进的产品开发工作。
这意味着需要大量的资金支持,例如Greenplum在2010年获得1亿美元投资但仍然不足以完成所有工作,最终不得不选择卖给EMC。今天最出名的几家大数据创业公司融的钱更多,例如Cloudera。基础设施类的大数据创业公司通常需要数百万美元种子资金启动,但是A轮融资的道路异常艰辛。
新兴的大数据创业公司还必须与那些在客户那里已经有一些知名度甚至合作项目的公司竞争,例如Cloudera、Hortonworks、10gen、亚马逊AWS、IBM、Oracle等。
反观大数据应用创业则相对简单的多,无论面向垂直行业应用还是数据可视化这样的通用大数据应用都是如此。因为这些大数据应用的价值对于客户来说更为直观,距离业务也更近,进入企业IT系统的摩擦也更小。
2.云计算是朋友
无论你是销售大数据基础设施还是应用,云计算都是更有效的业务载体。选择云计算不仅仅是在云端托管,更重要的是通过云计算向客户提供服务。你将拥有更多控制权,同时在有限的资源上优化运行也会让你对产品的理解更加透彻。
云计算也降低了潜在用户试用产品的成本和门槛,从NewRelic到亚马逊AWS都从云计算+大数据模式中获益。
3.开发者是朋友
如果你主要从事大数据分析,例如ClearStory、Platfora或者CRM营销应用,数据分析师就是你的朋友。无论那种情况,最好的办法就是围绕以开发者和市场人员为主的目标受众进行开发和营销工作,CIO反而不是很好的目标受众!
专注CIO而非开发者往往会导致你在实际签约时碰到棘手问题。围绕开发者营销的战术被很多云计算创业公司和纯大数据软件公司所采用,例如Splunk和Tableau。
再比如Infochimps和Continuuity的产品类似(两者都被迫按落云头,迫降在用户数据中心),但Continuuity完全面向开发者,这意味着能积累更多技术粉丝。
4.将数据科学家推向前台中央
这既是市场也是销售策略,数据科学家才是能够展示数据和平台威力的人,他们也是会议上最受欢迎的演讲者。
但大数据科学家也需要慎重选择传播内容。如今大家都接受了Hadoop和NoSQL,所以没必要每次开会言必称4V之类的科普。至于如何配置和集成大数据系统也只能吸引小部分听众,除非你的项目规模超大。
Cloudera比竞争对手出名的原因有很多,但其中Jeff hammerbacher绝对是一位举足轻重的人物。不要空谈大数据大数据的价值和架构,站在听众的立场说说具体能做哪些分析,如何做。
5.开源有多重要,取决于你自己
几乎所有的大数据公司都依赖开源软件,有些是“借”来的,如Hadoop、Storm以及各种数据库,有些是自行开发的,有些则是混合模式,例如在HBase上增加的一些功能应用。这些开源项目如此流行是因为社区的力量。
开源绝不是看起来那么轻松,不是说你在Github上放点代码就谈得上回馈社区了。开源的目的是将使用相同代码的人聚拢成社区,并不断改进代码。这里与第三点中我们提到的吸引开发者有关。只有更多的用户和开发者对你产生兴趣了,在你的产品上花时间和精力了,才有可能最终掏钱。
不计其数的创业公司都将代码开源了,但那些真正能推动项目并建设社区的公司才能脱颖而出。例如Neo Technology的Neo4j、Concurrent的Casading以及10gen的MongoDB。甚至Twitter这样面向大众的公司都开源了Storm和Mesos等项目。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27