京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代律师行业的三大变革
面对新技术,法律专业人士通常是最保守的人群之一,但大数据时代,律师和律师事务所要想脱颖而出,卓尔不群,尽快采用大数据技术是不二之选。
2008年金融危机以来,律师行业经历了长期的低潮,越来越多的企业客户无法负担高昂的律师费用,导致律所裁员不断,规模日渐萎缩。而那些行业领先的律所开始推崇“精益企业”,收费模式也从过去的固定费率调整为按需服务。
但是“精益律所”并非根本的解决方案,律师事务所还必须借助大数据大幅降低信息处理成本,提高数字竞争力。近日GigaOM专栏作者Derrick Harris撰文指出,律师事务所基于大数据进行流程优化时,需要重点考虑三个问题。
一、自动化造就“火眼金睛”
文档检索可能是大数据对法律工作影响最大的领域。律所通常存储海量的非结构化电子文档,包括电子邮件、Office文档、PDF文档等等,从数以TB计的数据中检索案件相关文档简直就是律师的噩梦,费时、费力而且准确性差。通过大数据智能分析软件,律所能够大大提高文档检索效率。例如大数据创业公司Recommind开发的大数据软件能通过机器学习算法进行“预测编码”,大大提高法律文档的检索效率。另外一家值得关注的企业——PureDiscovery的语义分析技术也能大幅提高文档检索效率。
值得注意的是Recommind还在不断开发新的产品Hypergraph(超级图谱),例如帮助律师发现人、话题、时间线、非结构化数据之间关联关系的功能(编者按:类似图谱分析)。在这个领域Recommind面对的竞争对手包括Zylab、EMC和IBM。
二、一切皆可数字化
案件诉讼中会产生大量文档,而这些文档“蕴藏”的数据对后来的案件辩护和审理则具有很高的参考价值。
大数据创业公司Lex Machina 的目标客户是知识产权律师 ,为他们提供决策支撑数据统计服务。 Lex machina将很多过去的较为模糊的定性数据都给量化了,例如“这位法官对被告很不利”、“这种索赔的案件通常都能赢”或“这位律师对此类技术的经验值最高”等。Lex Machina的数据分析的数据源主要来自公开的PACER(联邦法庭数据库),PACER的数据一直在那,但是Lex Machina是第一家通过机器学习和自然语言处理等技术从中“淘宝”的公司。
值得注意的是,Lex Machina的前身是一个非盈利项目——斯坦福知识产权法律结算中心,公司还招募到了斯坦福大学的机器学习和自然语言处理专家Andrew Ng和Christopher Manning。IEEE Spectrum上有一篇对Lex Machina的报道非常精彩。
三、大数据应用的自助与创新
与其遥遥无期地坐等大数据厂商开发好用的律师工具,律师们需要自己动手,创造性地利用各种现成的大数据工具和数据源。例如律师可以使用类似ScraperWiki这样的工具分析证人的Twitter联系人网络和活动记录。
律师还可以使用类似etcML这样的免费工具(对应的付费服务如AlchemyAPI)分析各种文本,包括推文和电子邮件,来发现关键观念或进行倾向性判断。零用import.io这样的工具从网站抽取数据(例如房产价格历史数据),并制作成图表。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27