
大数据时代律师行业的三大变革
面对新技术,法律专业人士通常是最保守的人群之一,但大数据时代,律师和律师事务所要想脱颖而出,卓尔不群,尽快采用大数据技术是不二之选。
2008年金融危机以来,律师行业经历了长期的低潮,越来越多的企业客户无法负担高昂的律师费用,导致律所裁员不断,规模日渐萎缩。而那些行业领先的律所开始推崇“精益企业”,收费模式也从过去的固定费率调整为按需服务。
但是“精益律所”并非根本的解决方案,律师事务所还必须借助大数据大幅降低信息处理成本,提高数字竞争力。近日GigaOM专栏作者Derrick Harris撰文指出,律师事务所基于大数据进行流程优化时,需要重点考虑三个问题。
一、自动化造就“火眼金睛”
文档检索可能是大数据对法律工作影响最大的领域。律所通常存储海量的非结构化电子文档,包括电子邮件、Office文档、PDF文档等等,从数以TB计的数据中检索案件相关文档简直就是律师的噩梦,费时、费力而且准确性差。通过大数据智能分析软件,律所能够大大提高文档检索效率。例如大数据创业公司Recommind开发的大数据软件能通过机器学习算法进行“预测编码”,大大提高法律文档的检索效率。另外一家值得关注的企业——PureDiscovery的语义分析技术也能大幅提高文档检索效率。
值得注意的是Recommind还在不断开发新的产品Hypergraph(超级图谱),例如帮助律师发现人、话题、时间线、非结构化数据之间关联关系的功能(编者按:类似图谱分析)。在这个领域Recommind面对的竞争对手包括Zylab、EMC和IBM。
二、一切皆可数字化
案件诉讼中会产生大量文档,而这些文档“蕴藏”的数据对后来的案件辩护和审理则具有很高的参考价值。
大数据创业公司Lex Machina 的目标客户是知识产权律师 ,为他们提供决策支撑数据统计服务。 Lex machina将很多过去的较为模糊的定性数据都给量化了,例如“这位法官对被告很不利”、“这种索赔的案件通常都能赢”或“这位律师对此类技术的经验值最高”等。Lex Machina的数据分析的数据源主要来自公开的PACER(联邦法庭数据库),PACER的数据一直在那,但是Lex Machina是第一家通过机器学习和自然语言处理等技术从中“淘宝”的公司。
值得注意的是,Lex Machina的前身是一个非盈利项目——斯坦福知识产权法律结算中心,公司还招募到了斯坦福大学的机器学习和自然语言处理专家Andrew Ng和Christopher Manning。IEEE Spectrum上有一篇对Lex Machina的报道非常精彩。
三、大数据应用的自助与创新
与其遥遥无期地坐等大数据厂商开发好用的律师工具,律师们需要自己动手,创造性地利用各种现成的大数据工具和数据源。例如律师可以使用类似ScraperWiki这样的工具分析证人的Twitter联系人网络和活动记录。
律师还可以使用类似etcML这样的免费工具(对应的付费服务如AlchemyAPI)分析各种文本,包括推文和电子邮件,来发现关键观念或进行倾向性判断。零用import.io这样的工具从网站抽取数据(例如房产价格历史数据),并制作成图表。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07