京公网安备 11010802034615号
经营许可证编号:京B2-20210330
交通大数据:大城市交通路在何方
在百度大数据战略会议上,交通运输部科技司司长赵冲久讲解了中国未来的大数据交通战略。众所周知北京的交通一向很糟糕,那么大数据会让这样的大城市交通带向何方?我希望能够从交通大数据的获得,以及对数据的处理上来对其解读,希望国民们都能从一个更宏观层面知道科技与政策的交融的结果,大数据并非玄虚,其实已在我们身边。
一,交通大数据如何获得?
正像赵冲久司长所说的,今后的政策都不再会是拍脑袋决定,而是要根据实实在在的数据来说话,那么交通上的大数据将从以下途径获得。
第一:用户出行的一卡通,以北京为例,交通局有一个终端系统,可以详细的统计出每天进出地铁的人数,每个人在地铁上的行踪都能一清二楚的获得,并且用户使用一卡通做公交车的也是能够统计出来的,但是公交车有个缺点就是有用户可能是不用公交卡出行的,但交通部依然可以根据使用一卡通的人数按一定比例计算出大概的人数。
当然,这里还有一个没有爆发的点NFC的近场支付,如果中国未来可以像日本那样达成全民的NFC支付,那么未来交通部获得的市民出行的数据将更加完善。
第二:运输车辆进行全面监控,目前《道路运输车辆动态监督管理办法》将于今年7月1日起执行,其中最大亮点就是运输车辆的车联网系统,将所有运输车辆都与GPS卫星连接,国家可以实时监控这些运输车辆的路线,这对交通规划是非常好的事情。
第三:车联网,由于车联网的逐渐普及,交通部也能更好的掌握车辆出行的数据,再根据比列进行模拟出大概数据。
第四:路网监控,国家在道路监控上的投入可谓不菲,重庆高速公路视频监控数据每天就达到50T,我们获得了船舶位置数据,航速数据每天就达5500万条,在广州,综合处理服务平台,每日新增城市交通运营数据记录超过12亿,每天数据量达到150到300GB。通过视频监控,交通部能够弥补上其他信息的不足。
第五:与百度的战略合作,这也是百度请交通部来做演讲的原因,百度将自己的地图生态开放给交通部,为其增加数据的渠道来源。百度地图的日请求次数有70亿次(包括手机APP地图,导航等等),拥有大量的用户出行数据,进而诞生了百度迁徙图,而交通部可以根据百度提供的数据来提高数据的可靠性,成为可靠的参考样本,进而做好决策。
此外,还有诸如物流公司的物流信息平台,以及船联网等等可以获取的方式,但不在本次讨论范围。
二,交通大数据的应用是如何?
其实交通部在使用大数据上已经做了很多事情,但是由于数据量的不断增大,自身的分析技术的不足,所以这次与百度共同合作,利用百度对数据的深度分析技术,为政策制定提供更可靠的参考。
当然还有能够帮助交通决策的情况有很多,这里留出最重要的四个部分。
第一:智能公交,这是交通部早已实现的事情,也是交通部最早利用大数据决策的成功案例之一。交通部根据GPS定位技术、3G通信技术、GIS地理信息系统技术等等结合对车辆的监控,实施的公交车智能调度策略,提高了公交车的利用率,同时也在不断减轻城市道路的拥堵负担。
目前智能公交的调度技术已经在绝大多数城市铺展开来,目前中国各个城市都在陆续展开该项目。
第二:用大数据辅助交通规划辅助决策,就公交网络而言,传统的方式需要在投入大量人力进行OD调查和数据收集。而目前的一卡通,则让数据更为全面的展现在决策人员面前,流量数据全部可以精确掌握,同时再利用上车辆拥堵时间,拥堵路段的大数据分析后,公交车的线路调整,增加与减少换乘站的决策就会更加有依据。
第三:对驾驶员评估,交通部与百度技术结合后将通过驾驶员的出行习惯,从路线到行为,为该驾驶员提供一套评估,而此人的评估会被送往交通管理部门以及运输企业等地方,让用人的参考数据更多。并且这些评估也可以为个人提供安全参考意见。
第四:预测群体出行行为,目前百度地图已经做到了可以提前两周预测某个城市的人数大概规模,而将这一成熟的预测算法用于交通后,结合交通部的其他大数据,便可以预测出群体出行的态势,对其可能出行的时间,出行路线,出行方式等等进行预测,从而为城市车辆调度提供决策帮助。
并且再反过来看,这些预测的群体出行行为数据也将为个人出行提供更加精确的服务,帮助个人决策,让个人出行尽量以最短的时间最短的路线抵达目的地。
结语:在我们的不知不觉中,中国已经迅速步入大数据决策的时代,而政府也在利用科技利用大数据对国家进行更科学的建设,而这次政府与百度的合作,可以说是互联网公司有史以来以来与政府政策制定结合的最为紧密的一次。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13