
图论是理解大数据的关键吗
现在大数据成为一个热门话题, 然而无论是网页, 产品信息, 车辆的功能, 文本, 病例还是气象等数据, 对数据的理解的第一步就是要理解数据之间的关联。利用图论, 我们将能够进一步提高我们对数据的理解能力,同时构建和分析图论模型将使得我们能够自动获取答案。本文我们将以搜索引擎为例介绍图论在大数据分析中的作用:
如今, Google已经成为了很多人日常生活中不可或缺的一部分,这个搜索引擎巨头通过围绕在它的核心能力也就是对互联网的索引, 把一系列服务整合起来提供给用户。
Google的网络爬虫和PageRank算法使得人们搜索网络的方式发生了革命性的变化。 通过对网页链接数量和重要性的分类, Google能够比竞争对手更快地提供更加相关的信息。
网站和网站之间的链接组成了一个图, 这不是我们通常所说的可视化的图, 而是一种用来表示每个网页如何与其他网页发生关系的模型。
PageRank算法就是采用这种模型来判断一个网页的重要性的。一个网页拥有越多的外部链接, 它的重要性就可能越高, 如果一个网页被更多的权威信息源所引用, 那么这个网页的重要性也就越高。 Google搜索引擎的搜索结果一般来说比竞争对手要更快更好, 就是因为它的算法涵盖了互联网页面之间的绝大部分链接。
把类似的想法应用到其他数据上, 来分析数据之间的关联, 也能够揭示一些数据背后的本质。 告诉我们哪些是相关的, 哪些是重要的。
图论就是研究数据联系的模式
要理解我们如何从数据中得出答案, 我们需要了解我们传统上是如何与数据打交道的。几乎所有的试图从数据中寻找答案的过程都是通过搜索实现的。
搜索首先总是从提出问题开始的。 我们把已知的与数据联系的越好, 我们提出的问题就越可能找到答案。 比如说, 如果你找不到你的钥匙,可能你会问:”我的钥匙在哪里?”。 不过, 这可不是一个容易得到答案的问题。它太宽泛了。 而如果你问:“我的钥匙是不是掉在收银台了?” 这个问题比第一个问题要具体一些。 如果你的钥匙在收银台, 那这个问题就是一个好的问题。如果不是的话, 这个问题也不是个好问题。
对数据库的查询与上述方式类似。 要想得到你想要的结果, 你需要构造一个与你的数据相关的查询条件。 你可以使用的查询语句不计其数, 但是只有少部分能够让你得到你需要的答案。
这样的情况才是数据科学的真正难点所在, 也是为什么好的分析师凤毛麟角的原因。 最好的数据科学家是那些既懂得数据, 又懂得那些提出正确问题的人。
如果把互联网看成数据集的话, 那么搜索引擎就是你的查询工具。
几十年来, 搜索引擎都在抓取网络信息, 索引网页以便能够被搜索到。 通过构造不同的搜索条件, 用户可以得到不同的结果。 搜索引擎服务商们不断的改进他们的产品。然而搜索引擎的真正创新出现在2000年左右。
当时, Google的PageRank算法通过对每个链接以及其链接的内容进行建模。通过图论建模, Google把网页之间的联系进行了量化, 以帮助用户更快地获得相关的结果。 这一算法使用了网页之间的关系来提高搜索结果的质量。 而无论哪种搜索引擎, 用体提供的搜索条件描述性越好, 就越能够得到好的结果。
你的搜索条件与Google的PageRank算法之间建立了一个联系。而Google通过图论建模,建立了一个你的搜索条件与相关页面之间的联系。 如果没有关于相关页面和链接的模型, Google就需要更精确的搜索条件才能得到满意的结果。 然而, 即便是采用更先进的搜索技术, 现在的数据问题也会使得构造一个正确的查询条件变得困难。
现在大数据成为一个热门话题, 然而无论是网页, 产品信息, 车辆的功能, 文本, 病例还是气象等数据, 对数据的理解的第一步就是要理解数据之间的关联。认同这一点的话, 就能够理解为什么图论在将来能够为人们的数据分析提供思路。
今天, 我们对数据的很多分析和研究方式已经被图论深深地影响了。 而在未来, 利用图论, 我们能够进一步提高我们对数据的理解能力。 构建和分析图论模型将使得我们能够自动获取答案。当我们把数据自己联系起来的时候, 数据中隐藏的答案会自己出现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10