京公网安备 11010802034615号
经营许可证编号:京B2-20210330
图论是理解大数据的关键吗
现在大数据成为一个热门话题, 然而无论是网页, 产品信息, 车辆的功能, 文本, 病例还是气象等数据, 对数据的理解的第一步就是要理解数据之间的关联。利用图论, 我们将能够进一步提高我们对数据的理解能力,同时构建和分析图论模型将使得我们能够自动获取答案。本文我们将以搜索引擎为例介绍图论在大数据分析中的作用:
如今, Google已经成为了很多人日常生活中不可或缺的一部分,这个搜索引擎巨头通过围绕在它的核心能力也就是对互联网的索引, 把一系列服务整合起来提供给用户。
Google的网络爬虫和PageRank算法使得人们搜索网络的方式发生了革命性的变化。 通过对网页链接数量和重要性的分类, Google能够比竞争对手更快地提供更加相关的信息。
网站和网站之间的链接组成了一个图, 这不是我们通常所说的可视化的图, 而是一种用来表示每个网页如何与其他网页发生关系的模型。
PageRank算法就是采用这种模型来判断一个网页的重要性的。一个网页拥有越多的外部链接, 它的重要性就可能越高, 如果一个网页被更多的权威信息源所引用, 那么这个网页的重要性也就越高。 Google搜索引擎的搜索结果一般来说比竞争对手要更快更好, 就是因为它的算法涵盖了互联网页面之间的绝大部分链接。
把类似的想法应用到其他数据上, 来分析数据之间的关联, 也能够揭示一些数据背后的本质。 告诉我们哪些是相关的, 哪些是重要的。
图论就是研究数据联系的模式
要理解我们如何从数据中得出答案, 我们需要了解我们传统上是如何与数据打交道的。几乎所有的试图从数据中寻找答案的过程都是通过搜索实现的。
搜索首先总是从提出问题开始的。 我们把已知的与数据联系的越好, 我们提出的问题就越可能找到答案。 比如说, 如果你找不到你的钥匙,可能你会问:”我的钥匙在哪里?”。 不过, 这可不是一个容易得到答案的问题。它太宽泛了。 而如果你问:“我的钥匙是不是掉在收银台了?” 这个问题比第一个问题要具体一些。 如果你的钥匙在收银台, 那这个问题就是一个好的问题。如果不是的话, 这个问题也不是个好问题。
对数据库的查询与上述方式类似。 要想得到你想要的结果, 你需要构造一个与你的数据相关的查询条件。 你可以使用的查询语句不计其数, 但是只有少部分能够让你得到你需要的答案。
这样的情况才是数据科学的真正难点所在, 也是为什么好的分析师凤毛麟角的原因。 最好的数据科学家是那些既懂得数据, 又懂得那些提出正确问题的人。
如果把互联网看成数据集的话, 那么搜索引擎就是你的查询工具。
几十年来, 搜索引擎都在抓取网络信息, 索引网页以便能够被搜索到。 通过构造不同的搜索条件, 用户可以得到不同的结果。 搜索引擎服务商们不断的改进他们的产品。然而搜索引擎的真正创新出现在2000年左右。
当时, Google的PageRank算法通过对每个链接以及其链接的内容进行建模。通过图论建模, Google把网页之间的联系进行了量化, 以帮助用户更快地获得相关的结果。 这一算法使用了网页之间的关系来提高搜索结果的质量。 而无论哪种搜索引擎, 用体提供的搜索条件描述性越好, 就越能够得到好的结果。
你的搜索条件与Google的PageRank算法之间建立了一个联系。而Google通过图论建模,建立了一个你的搜索条件与相关页面之间的联系。 如果没有关于相关页面和链接的模型, Google就需要更精确的搜索条件才能得到满意的结果。 然而, 即便是采用更先进的搜索技术, 现在的数据问题也会使得构造一个正确的查询条件变得困难。
现在大数据成为一个热门话题, 然而无论是网页, 产品信息, 车辆的功能, 文本, 病例还是气象等数据, 对数据的理解的第一步就是要理解数据之间的关联。认同这一点的话, 就能够理解为什么图论在将来能够为人们的数据分析提供思路。
今天, 我们对数据的很多分析和研究方式已经被图论深深地影响了。 而在未来, 利用图论, 我们能够进一步提高我们对数据的理解能力。 构建和分析图论模型将使得我们能够自动获取答案。当我们把数据自己联系起来的时候, 数据中隐藏的答案会自己出现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27