京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析的三大演进方向
最近Gartner发布了2013年度BI和数据分析的魔力四象限图,同时Wikibon也发布了2013年大数据市场预测,两份报告都明确指出,随着数据分析正在成为企业IT的核心,昔日的BI-ETL-EDW分析范型已经完全落伍,不再适用。
2013开年不久,一连串的重大事件的发生标志着大数据和数据分析领域正在加速演进,对于数据分析师专业人士和企业管理者来说,2013年是大数据进入企业应用的关键一年。
近日Alteryx公司总裁乔治马修(George Mathew,Twitter帐号@gkm1)与大数据领域的著名专家Mayank Bawa、Mike Olson和Scott Yara就数据分析的传统范型(BI-ETL-EDW)即将被新的分析范型取代达成共识,几位专家认为全新的数据分析平台将消除当前分析软件在设计和实施方面的延迟和低效率,从根本上重新思考和定义三大阻碍企业数据分析应用的关键问题:数据管理、分析透明度以及用户应用。
以下是马修在博客中对新数据分析范型三大演进方向的解读,IT经理网编译整理如下:
一、数据管理
Hadoop已经成为企业管理大数据的基础支撑技术。最近随着Greenplum Pivotal HD、Hortonworks Stinger和Cloudera的Impala的发布,Hadoop的技术创新速度正在加快,上述Hadoop项目传递出一个非常明确的信号:主要的Hadoop发行商想要在Hadoop HDFS之上提供实时、互动的查询服务。这个趋势将两个领域的杰作整合到了一起:众所周知的SQL查询处理与具备指数级扩展能力的HDFS存储架构。参考阅读:Hadoop发行版升级,NoSQL的未来是SQL?
二、去黑箱化
预测分析是管理者进行数据化决策的关键。目前预测和统计分析领域已经已经有很多技术可以帮助企业洞察不远的未来。但预测分析眼下面临的的最大问题是“黑箱”化。随着企业领导越来越多地以来预测分析技术做出重大商业决策,预测分析技术需要去黑箱化:包括应用自描述数据沿袭,增加对底层数学和算法解释等。“去黑箱化”有利于企业管理者学会彻底驾驭数据分析工具,不但看到数据分析结果,还知道分析是如何得来的,分析工具的设计原理等,这有助于管理者增加对预测分析的信心,而不是过去那样完全依靠“信仰”。
三、应用普及
即使实现了分析的去黑箱化,企业数据分析应用在企业中的部署依然面临以下几个方面的挑战:发布可复用应用,创建最佳实践、组织范围内的横向协作,无缝重组模型等。在最终用户(员工)中的应用普及是数据分析成功的关键。例如建设一个专门提供分析应用的企业移动应用商店App Store往往能大大加快数据分析的应用普及。
新数据分析范型的重要特征:
新的数据分析范型是目标导向的,不关心数据的来源和格式,能够无缝处理结构化、非结构化和半结构化数据。能够输出有效结果;能够提供去黑箱化的预测分析服务,能够面向更广泛的普通员工快速部署分析应用。
最近Gartner发布了2013年度BI和分析的魔力四象限图,同时Wikibon也发布了2013年大数据市场预测,两个报告都明确指出,随着数据分析正在成为企业IT的核心,昔日的BI-ETL-EDW分析范型已经完全落伍,不再适用。新的数据分析范型正在崛起,以下是我们能看到的未来趋势:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06