
如何重构未来,挖掘数据价值?
面对这样近乎于取之不尽、用之不竭的数据“宝藏”,应该如何对其进行采集、存储、管理、分析、挖掘,成为了各行各业近年来最为关注的重要话题。
那些重视IT科技的邻国
刚刚看完抗日战争胜利70周年的大阅兵,此时聊聊日本似乎非常应时应景。
日本虽然在二战中被盟军打得满地找牙,但是战争结束后立即制定了“科技立国”的复兴政策。基于对教育和信息产业的重视,以及来自各国的大批订单,日本又一次迅速崛起并成为世界第二经济大国。即使是在房地产泡沫破灭和广场协议之后,日本经历了长达二十年的经济停滞,在GDP总量上被中国赶超,但日本民众仍然维持着极高的个人素质和生活水准,企业创新能力依旧世界领先,看不出丝毫衰败迹象。
再来看看另一个邻国印度。我知道有很多同胞都看不起这个还存在奇葩种姓制度的国家,不过印度的软件行业却仅次于美国、雄踞全球第二。而印度人谈起IT时也常常会将其解读为“India's Tomorrow”,语气中透着十足的骄傲。中国软件行业近年来虽然一直在努力学习和参考印度,但是两者之间仍然隔着一条巨大的数字鸿沟。
不难发现,日本和印度的共性,就是对IT信息科技的高度重视,以及善于抓住信息时代的发展机遇。那么在风起云涌的云计算大数据时代,中国是否能够把握机会后来居上?
那些被浪费的数据价值
据统计,目前全世界的数据正在以每三年翻一番的速度急剧膨胀。而这些海量数据当中,有95%以上都属于图片、音频等非结构化数据,并且这一比例还在不断提升。
面对这样近乎于取之不尽、用之不竭的数据“宝藏”,应该如何对其进行采集、存储、管理、分析、挖掘,也就成为了各行各业近年来最为关注的重要话题。
除了没有经历二次分析浩如烟海的图片、音视频等非结构化数据之外,日志数据等用户行为记录也是一座远未被人们充分挖掘和利用的“金矿”。一方面,由于存储空间有限,绝大部分企业都会定期删除尚未分析的日志数据;另一方面,包括一些互联网企业在内,其对日志数据进行处理和分析的能力也极为有限,这也导致数据中蕴含的巨大价值远未被真正挖掘。
数据如何重构未来
尚未挖掘的数据价值被大量浪费的现象,也引发了业界有识之士的高度关注和深刻思考。
作为国内知名的云存储数据服务提供商,创建于2011年的七牛仅仅用了四年时间就发展到了28万企业用户,每日数据处理量达到12亿次。凭借在该领域积累的丰富经验,七牛对数据在企业构建未来商业中的重要性、企业在数据存储和处理上面临的诸多问题,都有着极为深切的体验和感悟。
为了更好地挖掘和利用数据价值,七牛举办了一场以“数据重构未来”为主题的D-Future大会,联合来自政商企界的近百名CEO、高管和技术大咖,通过十场行业演讲、六大巅峰对话、近二十场技术话题分享,从产业和技术的角度对数据从何而来、数据如何应用、数据如何重构未来等三大问题进行了探讨。
国务院发展研究中心基础经济研究部副部长田杰棠指出,中国有望成为世界上第一数据大国和“世界数据中心”。数据的流动需要更加开放和规范,数据产权的界定也要更加清晰,国家对此将做出相应的政策导向。数据只有流动起来,各行业效率才会得到提升。
《大数据时代》一书的作者维克托·迈尔·舍恩伯格也亲临现场,并通过Jawbone手环、Uber、Airbnb等热门大数据应用,形象地指出了先收集数据、再聚焦问题、发现创新性问题的重要性。
考虑到互联网时代不同行业面临的环境和情况也各不相同,大会还邀请了来自金融、社交、O2O、娱乐等各行各业的领头企业创始人、高管,针对不同行业领域中如何精益运营用户内容、如何用数据辅助用户画像、如何通过数据挖掘用户价值等多个话题进行了讨论。其中像通过云存储与人脸识别来解救走失儿童、用数据技术改善中国养老现状、如何部署移动时代的安防监控等民生问题,均引发了上千名与会嘉宾的极大兴趣。而正是通过各行各业对大数据的挖掘和应用,数据正在重构这个世界的未来。
重新定义云计算和大数据
在本次大会上,七牛发布了DORA数据处理平台,以及针对在线教育、旅游、娱乐、硬件、广电、O2O、安防等七大行业的数据服务解决方案。这些解决方案颠覆了传统方案中“产品+项目”的模式,以“组件服务+场景”的模式为用户提供服务,使得用户的产品可以更加快速地构建,同时也更加稳定。
七牛CEO许式伟指出,作为全球第一家用存储、加速、数据处理三个词来描述云存储服务的企业,七牛的定位是成为最开放、最完备的数据服务提供商。本次大会上发布的DORA数据处理平台、七大行业数据服务解决方案,将与七牛原有的KODO对象存储服务、FUSION融合CDN管理平台,以及即将发布的PILI直播云服务,一起重新定义云存储。在不远的2016年,七牛还将通过更具颠覆性的技术和产品,重新定义云计算和大数据。
被忽视的数据服务商价值
在这次参加D-Future大会的过程中,还发生了一个小插曲。我的一位前同事离开媒体后,几年打拼下来,现已成为某投资集团高管(你看干过记者就是一切皆有可能)。大家不难想象,当在这样一个数据行业的盛会上撞见这位光投资一个项目就是几百万甚至几千万的土豪时,我的感觉有多么诧异。
这位金融精英向我解释说,作为投资方在考察项目时要想避免被坑,常常需要找多个同类项目进行比对,并且还会通过产业链上下游的合作伙伴了解其业务情况及健康程度。而拥有28万家企业用户的七牛,在服务客户的过程中不仅对各行各业都有着深刻了解并积累了丰富经验,而且对企业的数据流向、业务流程、盈利情况等也了如指掌,因此其给出的意见和建议对于投资方来说有着极高的参考价值。未来他们集团还计划与七牛在更多领域开展合作。
在这个“数据为王”的全新时代,看来不仅仅是大数据,像七牛这样的数据服务商,本身其实就有巨大的价值可挖。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28