京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从用户角度看BI系统中数据分析模型的层次
在BI商业智能系统中,面向分析的数据模型一般是多维数据分析模型,分析模型由相应分析领域的分析维度(见附1)和分析指标(见附2)组成。针对面向不同层级用户的需求,分析模型按照分析的粒度划分为不同的层次,这里以面向高层管理人员宏观管理及决策分析需求、面向中层管理人员及业务人员的日常经营分析及业务跟踪与监控需求为例,仅将分析模型划分为“经营层次的分析模型”、“管理层次的分析模型”两个层次。
1、经营层次的分析模型
经营层次的分析模型是按照业务环节(业务环节是业务流程中的业务事件、交易事务等业务操作单元)组织的多维分析数据模型,一般情况下每个业务环节包含一到两个分析模型,该层次的分析模型一般保存细节粒度的事实数据,以便满足该环节的未知分析需求对维度组合及数据聚合等方面的灵活要求,同时也能够避免当业务流程发生改变,仅通过对维度成员的标识与追加及对事实数据的横向及纵向扩充就能够适应,而非因维度梳理补全、事实粒度细节不够所导致的对既有模型及数据的摒弃与重建。
经营层次分析模型的例子有计划预算模型、客户拜访模型、营销活动模型、物料请购模型、采购分析模型、入库分析模型、库存分析模型、库存异动模型、出库分析模型、客户订单分析模型、临检分析模型、医院结算模型、成本分摊模型、客户价格分析模型、客户耗材模型、客服投诉模型、质控核查分析模型、凭证分析模型、科目分析模型、核算分析模型(含往来核算,即往来客户及应收应付数据)、人员结构与变动模型、薪资分析模型、人员培训模型、招聘模型等。
2、管理层次的分析模型
管理层次的分析模型是基于经营层次的分析模型构建的,一般通过提升粒度(如时间维度的最小周期提升到月)、降维(如财务及业务分析模型通过将维与预算模型融合为预算执行跟踪模型等)并通过一致性(公共)维度联合等手段,形成横跨多个业务单元的管理模型。
管理层次分析模型的例子有:计划预算跟踪模型、库存需求预测模型、产品销售跟踪与分析模型、账龄分析模型、财务报表及指标分析模型、综合财务绩效评价模型、人员绩效分析模型等。
附1:分析维度
分析维度类似于业务实体,类似企业管理及业务领域的主数据信息,每个维度都要根据业务需求,按照多个视角组织成不同的层级关系,并分别包含若干扩展属性。主属性用来组织维度的层次结构并作为主要标识,主属性和扩展属性都可以在在查询分析中使用。
以医学检验行业BI为例,维度的例子有时间、地区、机构与人员、医院、讲师、病人、项目(套餐)、设备、仓库、物料、供应商、线路、车辆等。
附2:分析指标
分析指标是指在企业业务过程各环节中(如采购、营销、检验、结算等),产生的量化指标(直接产生的原始指标可成为度量值)。分析指标按照在各个维度上是否可以累加的特性区别,有全累加指标(如销售量、销售额)、半累加指标(如期末余额,在时间上不可累加,在其他维度上可累加)、非累加指标(如产品单价、各种比率等)。
在上层分析应用中使用的分析指标,一般是基于原始分析指标计算而来的衍生指标。
以医学检验行业BI为例,分析指标的例子有物料申购数量、库存量、待检数量、实收金额、分摊成本额、年初数量、期末余额等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27