京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据中心交换机行业没有领导者
尽管有多年的创新和上百万美金的投入,但是没有一个网络厂商在数据中心交换机fabric市场树立了领导地位。
近五年,几乎每个厂商都发布了新一代的数据中心交换机和fabric。这些交换机不但有更快的带宽,更低的延迟和更高的端口密度,它们还有大量数据中心架构技术上的创新。不要忘了,回到2011年,在软件定义网络颠覆行业之前,数据中心fabric在网络技术中还是相当有名的。
数据中心fabricde是为了让企业在一个高度虚拟化的数据中心或云中为服务器到服务器流量部署任意到任意连接的大型二层网络。思科在它的Nexus数据中心交换机上有基于TRILL的fabricPath;Brocade在他的VDX交换机上有基于TRILL的VCS;Avaya将SPB融入他的VENA架构;Juniper走的更远,提供Qfabric,他能将整个网络压缩为一层,这样二层多路径就不再重要。
所有这些技术都有拥护者,但是谁都没能赢得整个市场。思科也不例外。最近几个月两大前沿分析公司发布了数据中心网络行业的市场评估Gartner的魔力象限和Forrester Research的WAVE。没有一个分析将厂家放在了主导位置。这样的情况很少见,即使你觉得这些市场评估如何的天花乱坠。
Juniper由于很晚才采用Qfabric而在市场中受挫,它因期望过高而饱尝失望。思科也许销售了上千台Nexus交换机,但是有多少客户激活了fabricPath序列号?我和许多Nexus客户交流过,但是没有一个客户告诉我他们在生产中使用了fabricPath。如果思科能尽早让fabric得到认可,我想我早就应该和许多拥护fabricPath的人交流过了。
我曾和一些使用VCS、Qfabric的Brocade和Juniper的客户谈过,但是这些厂商早就知道不是每个人在市场上都为下一代数据中心网络做好准备。这两个厂商都曾建立了园区还有数据中心交换机产品线,而现在他们都撤出了。
Juniper新的EX9200在某种程度上承认了不是所有人将采用Qfabric,Juniper将EX9200一个重新包装的MX路由器定位于园区和数据中心核心平台。而Brocade更多的成功来自于数据中心里的VCS fabric和VDX交换机,它最近发布了新的ICX 6650交换机。Brocade的ICX交换机是企业园区产品的一部分,但是Brocade还推荐在non-fabric 数据中心使用1.6Tbps 6650 作为架顶式或列末交换机。
就算是思科成功的Nexus产品也没能够从客户数据中心驱走老的Catalyst 6500。我和仍在数据中心使用经典的Catalyst 6500(不是更新的Catalyst 6500-E)的网络工程师交流过,他们不打算在近期要撤走Catalyst 6500。对于前几年搭建的传统数据中心网络,这些用户很满意。
如今行业需要应对SDN。很多SDN厂商承诺解决一些问题,这些问题原来由数据中心fabrics解决。许多网络架构师不是很清楚fabrics和SDN将如何解决是买这个还是那个?或者都买?
我不认为厂商已经错过了fabric的机会。很多网络架构师会在未来几年考虑使用数据中心fabrics。但是所有厂商必须证明些东西。Forrester和 Gartner展示的行业低谷不是偶然。每个厂商都要确保自己的技术满足能客户的需要,然后每个厂商要向客户证明自己的技术是最好的。
最好是什么意思?解决方案需要真正解决高度虚拟化数据中心问题(低延迟,东-西流量);它要能兼容第三方平台(云架构,管理程序,安全);它要能简化操作;它要得到厂商良好的支持,因为这是新的技术;它要可用。最近几年,一些厂商生产的核心交换机有代码漏洞。最后,这些厂商需要解释fabrics和SND如何共同存在数据中心中。很多人已经开始着手此事,未来会有更多的讨论由此展开,特别是SDN的真正的潜力还不明朗。
同时,厂商需要意识到一鞋难合众人脚。一些网络技术人员不需要Nexus7000或完整的Qfabric部署。他们宁愿坚持使用Catalyst 6500s或EX交换机,对于只需要保证Exchange和Sharepoint正常运行的企业,这没什么不好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20