
数据变现四大模式释放电信大数据价值
OTT、管道化、资费调整是近几年电信行业在市场竞争上的主要挑战,但现在电信行业也开始有了巨大的转变,开始通过数据这个金矿来进行变现,利用数据为客户提供产品和服务,而且服务也做的越来越精细和具有针对性,向其他行业中进行拓展。
从目前看来数据变现上,中国和国外的电信运营商都处在不断探索的阶段,在商业层面上并没有很好的收入,但当数据的价值得到认可时,也将会有更大的价值释放。
电信行业四大变现模式
大数据变现主要是通过企业内部和外部两部分数据同时作用产生,在内部有三种数据,业务交易数据、流程型数据、交互式数据可以形成变现,外部则是行业数据和互联网等数据等。
电信行业在变现形式上有四个层面,第一、能力平台的变现,基于自身数据提供能力组件,比如位置平台、信用平台;第二、分析能力变现,行业分析报告;第三、运营的变现,为第三方客户提供运营服务;第四、纯数据变现。
目前较为成熟的两种变现形式是能力平台变现和分析能力变现。目前运营商的省级公司基本都已经拥有位置、信用、大数据服务中心等平台,另外针对特定事件的大数据分析也已经很成功。在Teradata天睿公司大中华区通信行业解决方案资深总监姜欣看来,目前的所有变现形式在技术上都可以实现,只是在推广和组织上会有所不同。
数据变现四大模式释放电信大数据价值
Teradata天睿公司大中华区通信行业解决方案资深总监姜欣
西班牙电信的智慧足迹(SmartSteps)就是一款面向零售商的能力平台,该产品基于完全匿名和聚合的移动网络数据,可对某个时段、某个地点人流量的关键影响因素进行分析,并将洞察结果面向政企客户提供。例如,洞察结果可为零售商新店设计和选址、设计促销方式、与客户反馈等提供决策支撑,从而帮助零售商更好地理解和满足客户需求、降低成本;也可帮助政府统计、预测各种场景下的人流量。
在四种数据变现模式之后,现在还有一个新的变化,电信运营商开始和第三方行也跨行业成立合资公司合作运营,通过一定形式双方共同运营数据资产,互相弥补各自数据资产的不足。像中国联通和招商银行合作推出的招联消费消费金融有限公司。
现阶段企业对于大数据变现的市场主要集中在产品层面,例如位置、信用等,产品的优势在于不用涉及其他行业业务,又能够将数据能力进行很好的体现。但未来,一定会向行业进行拓展,开发出上层的产品和服务。
姜欣指出,目前没有得到快速发展这是因为受制于法律法规和对其他行业理解两方面,当然运营商正在努力进行拓展,除了自身大数据部门的作用,同时连同企业以及政府合作,推动行业的融合。Teradata已经帮助中国移动某省公司搭建了产品体验平台,将运营商数据对外进行展示,促成和其他行业间的合作。
电信大数据平台该如何建
早期电信行业的数据分析是通过经营分析系统实现,现在则发展成完整的大数据系统,主要综合BMO三个数据域的数据,其中B域是经分数据,O域是网关类数据,M域是ERP、MIS等系统数据。
现如今大数据平台已经相对完善,主要的问题是让大数据和业务紧密的集合,这就需要解决速度和数量这一对矛盾的问题,所以在数据处理平台基础之上还需要补充充实化等很多能力,像流处理、动态数据仓库、高级分析可视化等技术,实现快速采集、处理、分析、呈现和业务呈现闭环。
“电信运营商的技术实力毋庸置疑,但在大数据领域还要拥抱更多大数据分析技术。”姜欣说道。Teradata的建议是在原有完善的基础设施上将速度再提升,将业务更紧密的结合,用更多技术来丰富现有的架构。
电信行业是Teradata业务的主要行业之一,而电信行业目前一般采用三部分技术:第一、数据平台技术,包括数据仓库、MPP技术、Hadoop,在之上还有内存数据库技术和Spark技术。第二,数据采集上提供TeradataAutomation、TeradataListener流处理技术等。第三,前端BI工具,TeradataAster等。尤其是Teradata统一数据架构(UDA)的高性能数据仓库、数据探索平台、Hadoop平台的组合非常适合电信行业,其中某一部分也可以使用不同品牌的产品进行组合,这一组合尤其解决了运营商的降本增效,让不同的平台做最擅长的事。
在行业的拓展上,Teradata内部通常会组织不同行业的顾问和运营商一起进行交流,分析不同行业的资源整合方案,同时也可以促成不同客户间的交流。姜欣指出,一方面Teradata帮助运营商规划行业需求,另一方面帮助第三方行业看到运营商数据的对其的作用。
大数据技术还在不断地完善,随着新技术的不断提出,大数据平台的可靠性、性能也将随之提升,而随着数据变现模式的深入探索,甚至未来创造出更多的商业模式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27