京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大华大数据技术助力平安城市新常态建设
在当今城市不断发展,城市化水平不断提高的过程中,我国城市人流、信息流高速增长,社会结构更是复杂多样,城市安全问题越来越成为人们关心和关注的问题。社会公共安全管理也要推陈出新,需要大力推进社会治安防控体系建设,使用更智慧的科技和信息化手段提升防控效能,维护社会稳定和安全。
“平安城市”是一个特大型、综合性非常强的管理系统,不仅需要满足治安管理、城市管理、交通管理、应急指挥等需求,而且还要兼顾灾难事故预警、安全生产监控等方面对图像监控的需求,同时还要考虑报警、门禁等配套系统的集成以及与广播系统的联动。从而运用科学、先进的技防手段,构建一个强大的安防系统来保证整个城市更加安全,建设平安城市和谐社会。
我国平安城市建设从“科技强警”战略和“3111”试点工程两大项目开始,历经十年的平安城市建设,全国基本实现了视频监控联网覆盖,然而随着监控数量的暴增,各种以前预想不到的问题也随之而来,平安城市建设已不再是单纯的视频监控点位建设,开始由数量向质量、向更全面、更贴近实际应用转变。
视频技术在平安城市建设中的应用方向
视频技术是平安城市的核心技术,也是安防企业的行业立足之本,从平安城市未来的发展趋势来看,视频技术将有如下应用变化:
1:从传统的安防应用向业务应用拓展
随着平安城市的深入建设,视频监控已经进入了“综合应用、深度应用、应急应用、社会应用”四大应用新阶段。其中,综合应用就是治安、刑侦、巡察等全警种的应用;社会应用就是服务社会管理,视频监控的数字资源为政府的社会管理创新服务,行政服务上提供重要支撑。深度应用主要在于数据深度挖掘,通过数字的分析数据了解一些社会新动态。应急应用,主要体现在突发事件的应急处理,大型的安全保卫工作当中,如大型足球赛演唱会奥运会等大型活动当中结合通讯保障的应用。
智能化分析应用推动视频监控从安防设备逐渐转变为视觉传感器。视频作为“高效、无源、非接触”的优质感知技术,可以在安防应用之外深入城市各行业的智慧业务成为全面感知的信息源头,从而提升平安城市综合信息的实时性、多样性和交互性,并可为平安城市实时业务开展和历史大数据挖掘形成有效支撑。目前视频技术从原先成熟的安防应用向平安城市业务应用的发展趋势已非常明显。
2:单一视频信息向多源信息融合发展
目前的监控摄像设备用途单一,但如果它们可以和其它传感器的数据融合,将有可能解决城镇化建设中的诸多问题。比如将摄像设备中有关车流的数据和空气质量传感器中的数据进行相关性分析,我们也许可以通过调整信号灯的时间,优化车辆在路口等待的时间。
国民经济与城市化建设快速发展,人口流动不断加快,城市人口迅猛增长,随之而来引发的城市管理中如公共卫生、公共交通、公共治安等相关问题。其中,公共治安问题更是重中之重,关系到城市居民的安居乐业以及和谐社会建设的成败,平安城市因势而生。平安城市建设项目作为一个特大型、综合性非常强的管理信息系统,不仅需要满足治安管理、城市管理、交通管理、应急指挥等诸多需求,而且还要兼顾灾难事故预警、安全生产监控等方面对图像监控的多方需求,同时还要考虑报警、门禁等配套系统的集成以及与广播系统的联动。它就像一张大网,全面网罗了城乡的各个角落,通过“事前自动预防”、“事中全面监控”、“事后快速突破”的方式来达到安全的目的。
3:视频监控向“可视化”方向发展
即实现报警定位可视化、警力分布可视化、警情现场可视化、出警过程可视化,通过四个可视化,实现对街面警力点对点、扁平化指挥调度,同时监督执法过程,做好取证工作。
依托现有的视频应用平台系统,实现警情与视频同步,对有监控条件的区域,实现警力未到、视频先到,进行现场监控、抓拍和取证。此外,还合理划分防区,确保首批处警力量以最快速度到达现场。
新常态下平安城市建设技术应用
新常态下以平安城市建设为核心的城市感知系统是社会治安防控体系建设的重要组成部分,公安机关针对重点区域、重要出入口,通过交通、治安卡口等前端感知单元,开展对“人、车、物”感知防控的集成应用,这对智能算法提出了更高的要求;“十三五”期间,公安机关将进一步开展公共安全视频图像报警系统建设,监控数据的也会随之增长,必须充分运用大数据与云计算技术,将海量视频信息的分布式存储和计算、视频结构化、视音频资源快速检索、大数据比对碰撞等现代信息技术广泛应用于实战。
大数据技术的应用
1:充分挖掘视频智能分析在平安城市中的应用价值
目前,大部分一二线城市已完成平安城市基础设施建设,接下来将进入到大联网整合阶段,然后在联网整合的基础上,实现视频资源的统一管理、智能分析和应用,实现基于视频大数据的智能分析和预测能力,进而实现真正意义上的“智慧安防”。
在智慧安防阶段,一方面需要高性能,高准确度的智能视频分析算法,另一面还需要能够支撑这些分析算法大规模应用的系统架构,比如云计算、大数据等。
目前,国外市场已大量应用智能视频监控系统,在国内市场也有较多的应用,如智能交通领域的车牌识别技术、交通违章事件检测(闯红灯)、平安城市智能运维系统的视频图像质量诊断、刑侦方面的视频快速检索和视频浓缩技术等,在当前平安城市建设中得到快速发展。但是,单纯的智能分析无法直接带来价值,其必须和整合业务系统紧密配合形成一个完整的业务流程。
2:充分发挥大数据在平安城市中的作用
IDC研究报告显示:2012年全球数据总量为2.84ZB;到2020年,这个数字将上升到40ZB。全球数据总量中约有一半是监控视频数据,其中2015年约占63%左右, 2020年则有可能约占44%。也正是因为洞察到随着前端布点的数量增加,视频数据量将不断增大和变得复杂,对大数据技术的需求日益迫切。现在有很多安防厂商推出了面向大数据的平安城市解决方案。
海量视频 & 图像数据
视频监控业务是典型的数据依赖型业务,依靠数据说话。尤其是高清、超高清监控时代的到来,将产生海量视频数据。这些海量数据,多数是冗余无用的,如何剔除这些无用数据,一直是人们研究的重点。
在大数据技术支撑下,网络视频监控数据存储模型可转向分布式的数据存储体系,提供高效、安全、廉价的存储方式。通过大数据技术,可实现视频图像模糊查询、快速检索、精准定位,并能够进一步挖掘海量视频监控数据背后的价值信息,快速反馈内涵知识辅助决策判断,从而将视频监控用善、用好。
大数据带来的解决海量数据难题的新技术和方法,对我国的平安城市建设再攀新高度至关重要。大数据在平安城市领域应用的关键,在于“IT”与“经营”的结合,即高效运用大数据技术,开发应用并落地转化为商业模式,提升平安城市的建设、运维、管理能力。越来越多IT新兴技术的融入,将打开大数据技术在视频监控领域的广阔发展路径,不少企业也想夺得这把金钥匙,开启大数据下新型业务战略布局之门。
对于安防行业来说,目前大量安防视频数据仍然是独立、零散的,且大量视频数据主要用于治安刑侦领域,以人工搜索为主,政府之间跨警种、跨部门、跨区域的联网共享应用仍然较少,能够为老百姓、为社会所用的应用更少有启动,所以安防企业需要做的,是积极加强内功修炼,提高研发能力,加强技术储备,向大安防集成平台转变,专注于业务整合和数据分析处理,应对更大数据量带来的冲击。
结束语
目前,随着公安部发布《关于进一步加强社会治安防控体系建设指导意见》、广东省公安厅启动“慧眼工程”建设。新一轮平安城市建设正呈风起云涌之势。此轮平安城市投入资金更大,参与建设的城市也更多,中国平安城市建设正显示出巨大的发展前景。
新常态下平安城市建设应立足公安“治安防控、刑事侦查”的业务需求,完成各个支撑系统和应用的建设、互溶,实现“事前防控、事中调度、事后研判”的建设目标,真正做到“建为用、用为战”建设理念。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29