
大数据在物联网运用中的作用
大数据这一概念早已有之,只是在较长的一段时间里处于沉寂状态。近年来,随着人们意识的增强以及观念的更新,大数据又重回人们的视线,并逐渐成为一股革新浪潮。大数据又名巨量资料,其涉及的数据量规模巨大,以至于无法通过主流工具在短时间内实现撷取与管理。对于这一部分海量、高增长且多样化的信息资产,只有运用更强的洞察力、决策力以及流程优化能力才能发现隐藏在数据背后的规律与价值,而可穿戴设备以及汽车中传感器应用的盛行,标志着大数据应用已经开始延伸到物联网领域。
在物联网中,对大数据技术的应用提出了更高的要求:首先,物联网中的数据量更大。物联网的组成节点除了人和服务器之外,也包括物品、设备、传感网等,数据流源源不断的产生,其数量规模远远大于互联网。其次,物联网中的数据传输速率更高。由于物联网与真实物理世界直接关联,要求实时访问以及控制相应的节点和设备,需要高数据传输速率予以支持。此外,物联网中数据的海量性也必然要求更高的传输速率。再者,物联网中的数据更加多样化。物联网涉及广泛的应用范围,从智能家居、智慧交通、智慧医疗、智慧物流到安防监控等,无一不是物联网的应用范畴。同时,在不同领域、不同行业,也需要面对不同类型和不同格式的数据,这使得物联网中的数据更加多样化。
针对物联网对海量数据的处理与应用需求,万物云开发团队在现有数据立方(DataCube)的基础之上,打造了一个针对智能硬件与物联网应用的大数据服务平台。该平台包括一个硬件数据服务接口,一个平台数据服务逻辑层以及一套面向应用的编程接口。物联网开发团队只需关注硬件及应用,就可通过万物云轻松处理物联网上的大数据。具体而言,万物云拥有如下特性。
丰富多样的应用功能。首先,万物云提供清晰而简明的编程实例、接口文档以及丰富的案例样本代码,以帮助开发者快速开发跨平台物联网应用,并通过社区论坛、微信和微博等社交平台提供全方位的技术支持。同时,万物云平台支持HTTP,MQTT及TCP接口协议,并开放第三方设备数据上报接口,允许各种智能设备的接入,且数据查询可支持百万级别QPS,并以分布式数据存储节点策略优化数据上传下载速度。
安全无忧的服务体验。万物云为用户提供了完善的身份验证手段,用户分别通过accesskey验证与seckey验证以保证数据访问安全以及设备数据安全。此外,平台设置了不同级别的数据访问权限和访问级别,提供多用户多应用的数据隔离机制以及专业的数据副本机制,并予以强大的企业级防火墙加以保护,保证用户数据不丢失,不泄露,也不被盗取。
无以伦比的性价比。一方面,万物云存储系统支持弹性扩展,存储空间可以保持海量规模,支持单表PB级别的数据存储以及表结构的横向无限扩展,可保证数据的实时性与准确性,即为用户提供一站式的数据存储和处理解决方案,使之专注于业务开发和规模扩展。另一方面,万物云的应用只需低廉的开发和运维成本,且对大部分用户都将免费提供数据服务,可满足用户应用原型开发、产品商用和运营管理等各阶段需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10