
大数据的最终受益者是消费者
浪潮集团董事长孙丕恕认为,传统产业的升级与延续要依靠互联网技术改变固有思维模式,而互联网公司也需要凭借自身优势尽可能与产业链结合。双向的互联网化最终将完成对传统产业的改造。
开放政府数据会很有用
新京报:面对如今互联网+一切的浪潮,你认为哪个行业的互联网+最有前途、哪个行业最不适合与互联网结合?
孙丕恕:我认为最有前途的行业是互联网+政务。
未来传统产业的互联网化和互联网公司的传统产业化将同时进行。一方面,传统产业要生存必须以互联网思维来改变过去的模式;另一方面,控制了商业模式的互联网公司将凭借自身的主导优势尽可能地覆盖产业链上更多的环节。双向的互联网化最终将完成对传统产业的改造。因此,可以说,没有不适合与互联网结合的行业,只有结合的密切程度的区别。
新京报:你连续两年两会建议政府能够数据开放,你看到了政府数据的哪些亮点?如果拿到这些数据,你会用做哪些用途?
孙丕恕:政府数据,比如说公安机构的人口信息,真实性、有效性、完整性、可用性都比较强,而且数据量大。利用政府开放的数据与互联网数据结合,可以开发出很多有利于国计民生的应用,比如可用于社会治理、公共安全、企业征信系统等领域。
像浪潮前几年为山东公安做的“警务千度”,就是利用大数据的警务搜索平台,它整合了公安、交通等多个政府部门的数据,实现对海量警务信息的横向关联、毫秒查询、批量比对,实现了人、案、物、信息的无缝对接和立体展现,成为山东省公安厅追踪逃犯等警务工作的“千里眼”、“顺风耳”。
云计算已成为不可阻挡的趋势
新京报:许多知名企业发生过用户数据外泄等事件,使得云计算产业的安全性和互联网的可信任度在全球范围引起了质疑。
孙丕恕:从目前的发展来看,云计算已成为不可阻挡的趋势。同任何新生事物一样,云计算在发展过程中,会遇到这样那样的问题。但是技术演进的脚步不会停止,相应的问题也会有相关的技术去解决。
新京报:云计算和大数据能为普通人的生活带来什么改变?
孙丕恕:事实上,云计算可以改变各个行业。不管是医疗、教育、工商、金融还是餐饮、旅游、零售等,这些行业受益于云计算和大数据,但最终受益的还是每一个消费者。其实我们几乎每天都在享受云计算、大数据带来的实惠,以旅游为例,旅游黄金周引发的道路交通拥堵、厕所等不好找的情况,这时如果有一个平台,能实时显示交通状况、景区服务点的人流等信息,人们能一目了然地了解相关信息,方便安排行程,同时也利于管理者对景区进行管理,更好服务游人。
用大数据分析规范互联网金融
新京报:此前有不少人反映,对于网页上根据自己的搜索和购买记录显示的广告非常反感,这种商业模式能否继续改进?一个人是否可以拒绝分享关于自己的一切数据?
孙丕恕:目前这种通过大数据进行行为习惯分析来推送广告,其实只是大数据的一种低级应用,对其中出现的不良现象,相信政府会通过立法进一步规范。
云计算、大数据真正的商业模式是在云计算的基础上,通过政府开放数据和整合互联网公开数据进行创新应用,发展新的业态。
在当今社会,拒绝分享关于自己的一切数据是不可能的。因为要享受服务,就会把个人基本信息分享给相关机构,比如最基本的服务,就医、购房等。
新京报:现在的互联网金融发展非常迅速,但跑路的互联网金融公司也非常多,其中的痛点就是风控和规范,大数据和云计算对互联网金融会有什么帮助?
孙丕恕:互联网金融企业的金融活动通常是网上进行的,这对于政府利用大数据分析对其监管提供了基础。
数据信用平台在规范互联网金融企业方面,可以做的有很多。比如浪潮曾经开发过一款以企业信用评估为主线的数据信用平台,通过整合政府数据和互联网数据开发的应用平台,能够在识别企业信用状况的基础上提供风险评估预警,方便用户查找企业信用等级,决定要不要购买其产品和服务,还能为政府监管企业信用情况提供数据标准。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03