京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一个成功的数据分析团队:角色与职责
多年以来我和数百家企业打过交道,在这个过程中,我领悟了让数据分析项目成功的一些因素,也亲眼看着很多项目失败。
最常见的失败原因说出来可能会让你惊讶。并非是缺乏数据专业知识或者整合失误,而仅仅是因为企业没有让“利用数据”成为任何人员的职责。太多公司花费好几个月收集有趣的数据,然后让它们静静地躺在角落里积攒灰尘。这个现象驱使我来撰写本文,希望它能给你灵感,让你为下一个分析项目增加一些结构性。 对分析的应用,本应该成为你不断汲取的商业泉源。
如果能为下列每个角色,找到至少一个乐于担当的人选,我保证你项目成功率会增加一千倍!对每个角色的具体描述和建议见下文。
*并未经过科学证实
| 角色 | 交付 |
|---|---|
| 项目领导者 | 项目规划,包含工作范围与时间 |
| 数据建构者 | 数据模型,查询语句 |
| 产品开发者 | 实现跟踪(埋点) |
| 分析者 | 提供新的业务问题 |
| 报告制作者 | 为业务提供报告 |
有一个团队成员要负责分析工作的实施交付。你可能已经知道,一个高效的项目管理者要:
对项目领导者的建议:
这个头衔听起来很炫,但它只是意味着你的团队需要有个懂技术的人创建数据模型,并理解查询语句如何工作。数据模型可以很简单,甚至像一封电子邮件,列出你要跟踪的行为和优先级。这个模型有助于确定和传达你的项目范围。数据建构者帮助整个团队评估哪些业务问题可以被回答,哪些不能。通常这个人不必是数据科学博士,一般由一个app开发人员,或者懂得用电子表格建立模型的人担任。
对数据分析者的建议:
项目一开始,就要有至少一个开发人员承担埋点的工作。他们在各处加一些代码,这样每次登录、购买、上传和其他行为的数据都能被保存。如果事件的来源有很多,比如移动应用+网页,这个工作可能由多个开发者完成(如,一个网站开发者和一个移动开发者)。在小一些的机构,埋点的开发者通常也扮演数据建构者。在大一些的团体中,开发者和数据建构者紧密合作,确保模型数据足够理想,以及事物被跟踪并以一致的格式标记(如“user.id” = “23cv42343jk88” 不是 “user.id” = “fran@cooldomain.com”)。埋点是个相对直接的过程,许多分析服务有直接可用的客户库使得此过程简化,不过,你的团队依然需要决定要跟踪什么行为,如何命名。
对产品开发者的建议:
你会收集很多有意思的数据,但如果没人利用,这些数据就不会有价值。团队里需要至少有一个人对数据背后隐藏的东西非常好奇。我把这些人称为分析者。分析者通常是个开发者、产品经理或产品团队/营销团队的某个人。这些人不仅疯狂地想了解业务问题的答案,还能时时提出新问题。分析者喜欢钻研项目第一阶段收集的数据,而且有很多点子,引出下一阶段应该收集的新东西。换句话说,团队中需要有个人享受实践分析的过程。不要着急,这样的人有很多:)。技术背景对这个角色有很大帮助,这使得他们能快速理解什么样的查询语句可以得到想要的答案。这个角色对于项目成功至关重要,如果没人从数据中理解、学习,就无法从中得到任何价值。
对分析者的建议:
这个角色不是必需的,但你可能会想要制作一些报告,便于整个团队和其他利益相关者获取。要想让数据的实用性会大大提升,数据应该更紧密地与业务流程相连,而不是被遗弃在数据库里等着有人翻阅。一个前端开发者要能够把query变成产品经理和其他业务人员阅读的报告。下面是一些可能有用的例子:
对报告制作者的建议:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12