京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器人技术、大数据、3D打印、新型材料……新技术的浪潮正酝酿一场崭新的工业革命,它将深刻改变制造业和人类生活。而在这场抢占未来发展制高点的竞赛中,嗅觉灵敏的浙商已经行动起来。本报即日起推出《新技术革命的浙江声响》报道,为读者展现浙商抢占先机,拥抱新的成长机遇的精彩一瞥。
当大数据开启一个全新时代,阿里巴巴集团希望能从海量交易数据中挖掘有价值的内容,这当然犹如在大海中航行。但阿里依然是最有资本进行大数据遥想的公司。十年来,阿里数据平台的服务器上,已经攒下了超过100PB的数据。
为马云的鸿鹄之志指导方向的不是新大陆,而是一系列战略布局。
2010年,推出重整的搜索业务“一淘”,2011年收购数据属性公司CNZZ,近期又接连收购友盟、入股新浪微博和高德,抢占数据源;在物流领域,阿里由天猫主导建设了与各大配送公司对接的“天网体系”,目前又牵头成立智能骨干物流网络“菜鸟科技”,构建物流信息数据平台。
阿里大数据已然起手开局。
十年磨剑
2003年的淘宝还是个“小朋友”,一个不起眼的购物平台,远不如当时的易趣名气大,甚至还有人预言淘宝会在18个月内夭折。
18个月后,淘宝让预言夭折了,淘宝交易量几乎呈指数增长,这一年也是淘宝数据的童蒙时代,淘宝“依葫芦画瓢”,学习当时最大的对手——易趣(当时eBay、亚马逊都已成立成熟的商业智能部门)并且拥有了第一款严格意义上的数据产品——“淘数据”,这是一份经营数据的报表,为各业务公司、部门提供经营报表的检索生成工具。
2009年,阿里数据开始进入产品化时代。“淘数据”从一个内部报表系统跃升为内部数据统称。脱胎于“雅虎统计”的工具“量子恒道”,为外部商户提供统计分析工具,用于跟踪自有店铺流量、点击、购买等数据的变化。
这一系列变革之后,阿里最高层提出了“数据开放”。2010年初,淘宝推出“数据魔方”,第一次向市场开放了全局市场数据,这款付费产品成为了大中型商户追捧的数据利器。
当然,简单的数据收集、分析并不能算作是真正的大数据。“其实有很多公司今天已经开始知道数据有用,但是应该收集什么数据、今天收集的数据能解决目前的哪些问题、这些数据未来有用在哪里,这都是我们要思考的问题。”阿里巴巴集团数据委员会会长车品觉表示。
2012年7月,阿里巴巴集团的“聚石塔”正式发布,“数据分享平台”战略全面展开。这意味着,整合阿里旗下所有电商模式的“基石”——大数据平台初步成形,阿里巴巴集团正在重新认识电子商务:成为更强壮的数据平台,服务电商。同时,阿里巴巴B2B公司CEO陆兆禧出任集团首席数据官岗位,向CEO马云直接汇报。马云在“聚石塔”发布的时候宣布了阿里集团未来新战略:平台、金融、数据。
数据觉醒
“阿里本质上,未来会是一家数据运营公司。”集团首席战略官曾鸣说。在新的公司级战略里,阿里巴巴正低调却尽一切努力以数据作为行动新方向。“不能只是讲故事玩概念了,我们到时候亮剑了。”车品觉说。
首当其冲的便是阿里金融。基于采集到的海量企业数据,阿里金融数据团队设计的模型综合了信用记录、成交数额等结构化数据,以及用户评论等非结构化数据,加上外部搜集的用电量、银行信贷等数据,可就放贷与否、放贷额度精准决策,其贷款不良率仅为0.78%。
“比如你是淘宝卖家,你每月的交易额、发货地址、手机号段、家庭住址、性别等等数据都被作为信用评价的一个维度采集起来。”阿里金融负责人举了个最显而易见的例子,“这个维度银行是不可能采纳的,因为他们依然用的是上门调研的方式,人力、时间成本太高,并且也不可能长期跟踪。有时候碎片数据可以反映全局,这种数据在模型中的权重就会比较高。”
事实上,阿里内部对数据的运用不仅仅体现在商业产品上,数据也在大大缩短、简化内部的业务流程。“数据最终的指向是积累的信用,包括个人信用也包括企业信用。我们所做的一切都是在为这个目标服务,首先将数据变成信用,良好的信用又可以取得贷款、获得更好的服务,增加你的财富,这是一个良性循环,也就是数据价值的‘闭环’。”该负责人解释。
刚刚横空出世的“菜鸟网络”,要利用大数据打造一张全国24小时可达的智能物流网络的雄心也已然明朗。根据马云的蓝图,这绝非一个传统的全国物流仓储网络(内部代号地网),而是要以互联网的方式来运营——基于对交易信息的数据挖掘结果以及云计算的方式,来对物流进行全局智能调控(内部代号天网)。“没有大数据的应用,天地两网不可能合一。”菜鸟网络负责人表示。
近期阿里巴巴在移动互联网市场频频出手,未来也许有可能将数据进行融合,用户的各种信息得以呈现在一个全景图里面,即使在完全陌生的城市,借助这种服务,你可以知道附近哪家店支持支付宝付款,微博上哪个网友刚刚在附近的咖啡店歇脚。(本文来自:CDA数据分析师)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20