京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器人技术、大数据、3D打印、新型材料……新技术的浪潮正酝酿一场崭新的工业革命,它将深刻改变制造业和人类生活。而在这场抢占未来发展制高点的竞赛中,嗅觉灵敏的浙商已经行动起来。本报即日起推出《新技术革命的浙江声响》报道,为读者展现浙商抢占先机,拥抱新的成长机遇的精彩一瞥。
当大数据开启一个全新时代,阿里巴巴集团希望能从海量交易数据中挖掘有价值的内容,这当然犹如在大海中航行。但阿里依然是最有资本进行大数据遥想的公司。十年来,阿里数据平台的服务器上,已经攒下了超过100PB的数据。
为马云的鸿鹄之志指导方向的不是新大陆,而是一系列战略布局。
2010年,推出重整的搜索业务“一淘”,2011年收购数据属性公司CNZZ,近期又接连收购友盟、入股新浪微博和高德,抢占数据源;在物流领域,阿里由天猫主导建设了与各大配送公司对接的“天网体系”,目前又牵头成立智能骨干物流网络“菜鸟科技”,构建物流信息数据平台。
阿里大数据已然起手开局。
十年磨剑
2003年的淘宝还是个“小朋友”,一个不起眼的购物平台,远不如当时的易趣名气大,甚至还有人预言淘宝会在18个月内夭折。
18个月后,淘宝让预言夭折了,淘宝交易量几乎呈指数增长,这一年也是淘宝数据的童蒙时代,淘宝“依葫芦画瓢”,学习当时最大的对手——易趣(当时eBay、亚马逊都已成立成熟的商业智能部门)并且拥有了第一款严格意义上的数据产品——“淘数据”,这是一份经营数据的报表,为各业务公司、部门提供经营报表的检索生成工具。
2009年,阿里数据开始进入产品化时代。“淘数据”从一个内部报表系统跃升为内部数据统称。脱胎于“雅虎统计”的工具“量子恒道”,为外部商户提供统计分析工具,用于跟踪自有店铺流量、点击、购买等数据的变化。
这一系列变革之后,阿里最高层提出了“数据开放”。2010年初,淘宝推出“数据魔方”,第一次向市场开放了全局市场数据,这款付费产品成为了大中型商户追捧的数据利器。
当然,简单的数据收集、分析并不能算作是真正的大数据。“其实有很多公司今天已经开始知道数据有用,但是应该收集什么数据、今天收集的数据能解决目前的哪些问题、这些数据未来有用在哪里,这都是我们要思考的问题。”阿里巴巴集团数据委员会会长车品觉表示。
2012年7月,阿里巴巴集团的“聚石塔”正式发布,“数据分享平台”战略全面展开。这意味着,整合阿里旗下所有电商模式的“基石”——大数据平台初步成形,阿里巴巴集团正在重新认识电子商务:成为更强壮的数据平台,服务电商。同时,阿里巴巴B2B公司CEO陆兆禧出任集团首席数据官岗位,向CEO马云直接汇报。马云在“聚石塔”发布的时候宣布了阿里集团未来新战略:平台、金融、数据。
数据觉醒
“阿里本质上,未来会是一家数据运营公司。”集团首席战略官曾鸣说。在新的公司级战略里,阿里巴巴正低调却尽一切努力以数据作为行动新方向。“不能只是讲故事玩概念了,我们到时候亮剑了。”车品觉说。
首当其冲的便是阿里金融。基于采集到的海量企业数据,阿里金融数据团队设计的模型综合了信用记录、成交数额等结构化数据,以及用户评论等非结构化数据,加上外部搜集的用电量、银行信贷等数据,可就放贷与否、放贷额度精准决策,其贷款不良率仅为0.78%。
“比如你是淘宝卖家,你每月的交易额、发货地址、手机号段、家庭住址、性别等等数据都被作为信用评价的一个维度采集起来。”阿里金融负责人举了个最显而易见的例子,“这个维度银行是不可能采纳的,因为他们依然用的是上门调研的方式,人力、时间成本太高,并且也不可能长期跟踪。有时候碎片数据可以反映全局,这种数据在模型中的权重就会比较高。”
事实上,阿里内部对数据的运用不仅仅体现在商业产品上,数据也在大大缩短、简化内部的业务流程。“数据最终的指向是积累的信用,包括个人信用也包括企业信用。我们所做的一切都是在为这个目标服务,首先将数据变成信用,良好的信用又可以取得贷款、获得更好的服务,增加你的财富,这是一个良性循环,也就是数据价值的‘闭环’。”该负责人解释。
刚刚横空出世的“菜鸟网络”,要利用大数据打造一张全国24小时可达的智能物流网络的雄心也已然明朗。根据马云的蓝图,这绝非一个传统的全国物流仓储网络(内部代号地网),而是要以互联网的方式来运营——基于对交易信息的数据挖掘结果以及云计算的方式,来对物流进行全局智能调控(内部代号天网)。“没有大数据的应用,天地两网不可能合一。”菜鸟网络负责人表示。
近期阿里巴巴在移动互联网市场频频出手,未来也许有可能将数据进行融合,用户的各种信息得以呈现在一个全景图里面,即使在完全陌生的城市,借助这种服务,你可以知道附近哪家店支持支付宝付款,微博上哪个网友刚刚在附近的咖啡店歇脚。(本文来自:CDA数据分析师)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06