
电商数据分析8要点
说到数据分析,大家心里首先想到的是什么?UV,PV,点击率,跳失率,ROI还是别的什么?这些数据的作用 大家可以说出一大堆,这些利用数据分析,推广引流效果,分析页面营销效果,分析顾客质量效果等等的数据分析,已经成了很多运营 和新手们的常规思路和操作了。
这个对吗?不能说不对,因为这些的确是要做的;但也不能说对,因为这些不是最重要的;那最重要的是什么?回答这个问题 之前,大家不妨换位思考下,如果你是老板或者是BOSS来做这个项目,你最为关心的点是什么?最想利用数据分析知道什么?
就三点;成本,效率,效果;打工者和老板的区别也就在这里;打工者的心态效果最重要,效率第二,成本第三;因为效果就是功劳,功劳就是存在感和成绩,就是身价;效率不重要,无非累点,功劳苦劳是一样的;成本反正是老板出钱,无关痛痒;
但老板的心态就反过来了,成本是最重要的,要割肉总会谨慎点儿;其次是效果这钱花的值不值的;最后才是效率,这个效果要多久才能看到。
回到本文主题,我们数据分析真正的要点,真正的根本也是这三点,成本,效率,效果;那么围绕这个要点,我们该如何具体的操作了?具体分析哪些数据点了?
1、精准流量来源
生意谁都想好刚用在刀刃上,平白无故的损耗,不是傻大粗,就是富二代;客户,流量 哪儿来的最精准?对比每个流量来源的比例,和用户质量;通过流量来源 访问深度 停留时间,实际转化等等,来判断;
哪儿的流量最靠谱?其次是哪儿的?决定了 后期推广要点的主次;
实际运用:在没有经验和资源的背景下,需要试水各种渠道的引流效果,我们监控这些引流渠道的质量;如:哪儿来的客户成交转化率最高?哪儿来的客户 访问深度 停留时间都最好?
2、每个用户的获取成本
一个流量多少钱?一个客户多少钱?一个实际购物转化的精准客户多少钱?
这样,就清晰落实了计划目标;我需要实现500000的月销售额;一个成交的精准客户的成本是10元,客户人均消费5000块;那么你要实现50万的月销售额,起码要1000块以上的广告投入;
这样 不就清晰了吗?
实际运用:花了多少钱?来了多少人?多少人付款了?量子后台都有具体的
3、每个用户能赚多少钱
跟第二个差不多,这个重点是 咱们能从每个用户手里赚多少钱?
1000个人里面,有多少人是无意向用户?有多少人是潜在用户?有多少人高质量的成交用户?通过对引流渠道的监控排查,分析三者的比例;
这对于咱们营销推广的支出,很有参考意义
实际运用:来了多少人?多少人付款了?多少人没付款?销售额多少?销售额除以总人数,人均消费多少钱?除以成交用户数,质量用户 人均成交多少钱?
4、每个用户,你总共能赚多少钱
这里有两个意思,1,是习惯,用户习惯性在购物周期的反复消费购买你们家的产品;2,用户对你现在的产品,或者往后的产品都很感兴趣,持续关注后消费;如同苹果小米系列;
实际运用:统计你店铺里反复消费人群,试着找出他们的消费周期;都是因为什么?因为什么时段 过来消费的?然后 针对其消费周期的原因 针对性的做营销活动,是不是会事半功倍了?还有兴趣针对其感兴趣的元素来包装产品,是不是更容易让用户爱不释手了?
比如:很喜欢漂亮衣服的OL,每个月肯定会在发工资 和 周末约会等时候,发现衣服不够穿,想多买几件的冲动等等。
5、不是你的用户,但是你的产品用户
听着很绕,其实意思很简单;用户在网上找他们心怡的某一款产品;但并不是找你,但如果你也有类似的 产品,那么这帮人是不是可以吸引过来 为你所用了?
实际运用:分析自己类目里流行的款式风格都有什么?喜欢他们的用户都多不多?自己是不是可以针对这个用户喜欢多的产品,关键词属性等等,做下关键词优化,属性优化,然后再营销包装下了?效果肯定不会差
6、为什么没有付款?
不管是新老客户 下单购买转化;流程走到一半,忽然不买了;为什么花了钱引流,效果却没跟上?中间出了什么问题?因为系统原因,无法使用支付宝或网银?因为看到竞争对手比你价格低?等等
实际运用:用户购买的通道 不仅要保障通畅,还要保障舒心舒适;
7、用户在那儿找到我们的?
这个跟第一个的意思差不多,但是偏向于用户调查了;其实也没那么麻烦;知道用户都是在那儿找到我们的,更有利于我们调整推广方向,提升效率,提升效果,降低成本。
实际运用:可以做个简单的顾客调查;还可以在你店铺流量入口多了的情况下,让客户在客户咨询的时候,提问收集下。
8、移动端的趋势
移动端毫无疑问是下一个阶段的热点;当前有多少人是通过移动端访问你的网站店铺的?当前的移动端流量比例又有多少?分拆部分时间精力,优化下移动端的浏览和购物体验。
实际运用:产品详情页,店铺移动端装修等等,适当优化下移动端的浏览和购物体验了。
本来只有8点,小舟生硬的加上了第8条;因为移动端的确是一个趋势,碎片化时间不说,官方大力扶持也不说;单说各个平台对移动端的疯狂劲儿 都能看出这个市场的火热,以上六点是咱们做生意 必须时常要考虑的点;最后一点是针对移动端要加油的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18