
数据分析的思维方式
数据分析的目的是什么?是解决我们现实中的某个问题或者满足现实中的某个需求。 那么,在这个从数据到信息的过程中,肯定是有一些固定的思路,或者称之为思维方式。下面给你一一介绍。
发现很多朋友不会处理数据,这个过程叫做数据清洗,今天就简单讲下。
一:数据分析的五大思维方式。
首先,我们要知道,什么叫数据分析。其实从数据到信息的这个过程,就是数据分析。数据本身并没有什么价值,有价值的是我们从数据中提取出来的信息。
然而,我们还要搞清楚数据分析的目的是什么?
目的是解决我们现实中的某个问题或者满足现实中的某个需求。
那么,在这个从数据到信息的过程中,肯定是有一些固定的思路,或者称之为思维方式。下面给你一一介绍。(本文用到的指标和维度是同一个意思)
第一大思维【对照】
【对照】俗称对比,单独看一个数据是不会有感觉的,必需跟另一个数据做对比才会有感觉。比如下面的图a和图b。
图a毫无感觉
图b经过跟昨天的成交量对比,就会发现,今天跟昨天实则差了一大截。
这是最基本的思路,也是最重要的思路。在现实中的应用非常广,比如选款测款丶监控店铺数据等,这些过程就是在做【对照】,分析人员拿到数据后,如果数据是独立的,无法进行对比的话,就无法判断,等于无法从数据中读取有用的信息。
第二大思维【拆分】
分析这个词从字面上来理解,就是拆分和解析。因此可见,拆分在数据分析中的重要性。在派代上面也随处可见“拆分”一词,很多作者都会用这样的口吻:经过拆分后,我们就清晰了……。不过,我相信有很多朋友并没有弄清楚,拆分是怎么用的。
我们回到第一个思维【对比】上面来,当某个维度可以对比的时候,我们选择对比。再对比后发现问题需要找出原因的时候?或者根本就没有得对比。这个时候,【拆分】就闪亮登场了。
大家看下面一个场景。
运营小美,经过对比店铺的数据,发现今天的销售额只有昨天的50%,这个时候,我们再怎么对比销售额这个维度,已经没有意义了。这时需要对销售额这个维度做分解,拆分指标。
销售额=成交用户数*客单价,成交用户数又等于访客数*转化率。
详见图c和图d
图c是一个指标公式的拆解
图b是对流量的组成成分做的简单分解(还可以分很细很全)
拆分后的结果,相对于拆分前会清晰许多,便于分析,找细节。可见,拆分是分析人员必备的思维之一。
第三大思维【降维】
是否有面对一大堆维度的数据却促手无策的经历?当数据维度太多的时候,我们不可能每个维度都拿来分析,有一些有关联的指标,是可以从中筛选出代表的维度即可。如下表
这么多的维度,其实不必每个都分析。我们知道成交用户数/访客数=转化率,当存在这种维度,是可以通过其他两个维度通过计算转化出来的时候,我们就可以 【降维】.
成交用户数丶访客数和转化率,只要三选二即可。另外,成交用户数*客单价=销售额,这三个也可以三择二。
另外,我们一般只关心对我们有用的数据,当有某些维度的数据跟我们的分析无关时,我们就可以筛选掉,达到【降维】的目的。
第四大思维【增维】
增维和降维是对应的,有降必有增。当我们当前的维度不能很好地解释我们的问题时,我们就需要对数据做一个运算,增加多一个指标。请看下图。
我们发现一个搜索指数和一个宝贝数,这两个指标一个代表需求,一个代表竞争,有很多人把搜索指数/宝贝数=倍数,用倍数来代表一个词的竞争度(仅供参考)。这种做法,就是在增维。增加的维度有一种叫法称之为【辅助列】。
【增维】和【降维】是必需对数据的意义有充分的了解后,为了方便我们进行分析,有目的的对数据进行转换运算。
第五大思维【假说】
当我们拿不准未来的时候,或者说是迷茫的时候。我们可以应用【假说】,假说是统计学的专业名词吧,俗称假设。当我们不知道结果,或者有几种选择的时候,那么我们就召唤【假说】,我们先假设有了结果,然后运用逆向思维。
从结果到原因,要有怎么样的因,才能产生这种结果。这有点寻根的味道。那么,我们可以知道,现在满足了多少因,还需要多少因。如果是多选的情况下,我们就可以通过这种方法来找到最佳路径(决策)
当然,【假说】的威力不仅仅如此。【假说】可是一匹天马(行空),除了结果可以假设,过程也是可以被假设的。
我们回到数据分析的目的,我们就会知道只有明确了问题和需求,我们才能选择分析的方法。
顺带给大家讲讲三大数据类型。
这个属于偷换概念,其实就是时间序列的细分,不是真正意义上的数据类型,但这个却是在处理店铺数据时经常会碰到的事情。数据放在坐标轴上面分【过去】丶【现在】和【未来】
第一大数据类型【过去】
【过去】的数据指历史数据,已经发生过的数据。
作用:用于总结丶对照和提炼知识
如:历史店铺运营数据,退款数据,订单数据
第二大数据类型【现在】
【现在】的概念比较模糊,当天,当月,今年这些都可以是现在的数据,看我们的时间单位而定。如果我们是以天作为单位,那么,今天的数据,就是现在的数据。现在的数据和过去的数据做比较,才可以知道现在自己是在哪个位置,单有现在的数据,是没什么用处的。
作用:用于了解现况,发现问题
如:当天的店铺数据
第三大数据类型【未来】
【未来】的数据指未发生的数据,通过预测得到。比如我们做得规划,预算等,这些就是在时间点上还没有到,但是却已经有了数据。这个数据是作为参考的数据,预测没有100%,总是有点儿出入的。
作用:用于预测
如:店铺规划,销售计划
三种数据是单向流动的,未来终究会变成现在,直到变成过去。
他人我不知道,但我自己非常喜欢把数据往坐标轴上面放,按时间段一划分,每个数据的作用就非常清晰。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16