京公网安备 11010802034615号
经营许可证编号:京B2-20210330
EXCEL数据分析处理(4)
如果不再需要分类汇总结果,可在图2-49所示的【分类汇总】对话框中单击【全部删除】,即可撤消分类汇总。
数据透视表是用于快速汇总大量数据的交互式表格,用户可以旋转其行或列以查看对源数据的不同汇总,也可以通过显示不同的页来筛选数据,还可以显示所关心区域的数据明细。通过对源数据表的行、列进行重新排列,使得数据表达的信息更清楚明了。
以例2-11的数据为例,建立数据透视表的步骤如下:
(1)首先,要保证数据源是一个数据清单或数据库,即数据表的每列必须有列标。
(2)单击数据清单或数据库中的任一非空单元格,然后单击【数据】菜单,选择【数据透视表和图表报告】项,则系统弹出【数据透视表和数据透视图向导—3步骤之1】对话框,如图2-51所示,根据待分析数据来源及需要创建何种报表类型,进行相应的选择,然后单击【下一步】按钮,系统弹出【数据透视表和数据透视图向导—3步骤之2】对话框,如图2-52所示;
图2-51 【数据透视表和数据透视图向导—3步骤之1】对话框
图2-52 【数据透视表和数据透视图向导—3步骤之2】对话框
(3)默认情况下,系统自动将选取整个数据清单作为数据源,如果数据源区域需要修改,则可直接输入“选定区域”,或单击【浏览】按钮,从其他的文件中提取数据源。确定数据源后,单击【下一步】按钮,系统弹出【数据透视表和数据透视图向导—3步骤之3】对话框,如图2-53所示。
图2-53 【数据透视表和数据透视图向导—3步骤之3】对话框
(4)在【数据透视表和数据透视图向导—3步骤之3】对话框中,单击【版式】按钮,出现【数据透视表和数据透视图向导—版式】对话框,如图2-54所示。
(5)【数据透视表和数据透视图向导—版式】对话框中,再根据需要,将右边的字段按钮拖到左边的图上,这里,将“销售人员”拖到“行(R)”图上,将“商品”拖到“列(C)”图上,将“数量(台)”和“金额(元)”拖到“数据(D)”图上,如图2-55所示。
图2-55 设置数据透视表的版式
(6)设置好版式后,单击【确定】按钮,则系统就返回到图2—44所示的【数据透视表和数据透视图向导—3步骤之3】对话框,然后单击【完成】按钮,数据透视表就完成了,如图2-56所示。
这样,通过图2-56的数据透视表,即可看出每个销售人员所销售商品的种类、数量、销售额及其合计数,从而以此为基础可很方便地对每个销售人员的销售业绩进行评价。
图2-56 各个销售人员销售商品的数据透视表
在图2-56所建立的数据透视表上,可以很方便地进行多角度的统计与分析。比如要了解李四所销售商品的情况,可在“销售人员”下拉列标中只选中“李四”,然后单击“确定”按钮,则李四的销售情况如图2-57所示。
图2-57 李四的销售情况汇总
还可以建立透视图,方法是:单击数据透视表中的任一单元格,单击鼠标右键,在快捷菜单中选择【数据透视图】项,则系统自动显示出数据透视图,从而得到每个销售人员的更为直观的销售情况。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31