
EXCEL数据分析处理(4)
如果不再需要分类汇总结果,可在图2-49所示的【分类汇总】对话框中单击【全部删除】,即可撤消分类汇总。
数据透视表是用于快速汇总大量数据的交互式表格,用户可以旋转其行或列以查看对源数据的不同汇总,也可以通过显示不同的页来筛选数据,还可以显示所关心区域的数据明细。通过对源数据表的行、列进行重新排列,使得数据表达的信息更清楚明了。
以例2-11的数据为例,建立数据透视表的步骤如下:
(1)首先,要保证数据源是一个数据清单或数据库,即数据表的每列必须有列标。
(2)单击数据清单或数据库中的任一非空单元格,然后单击【数据】菜单,选择【数据透视表和图表报告】项,则系统弹出【数据透视表和数据透视图向导—3步骤之1】对话框,如图2-51所示,根据待分析数据来源及需要创建何种报表类型,进行相应的选择,然后单击【下一步】按钮,系统弹出【数据透视表和数据透视图向导—3步骤之2】对话框,如图2-52所示;
图2-51 【数据透视表和数据透视图向导—3步骤之1】对话框
图2-52 【数据透视表和数据透视图向导—3步骤之2】对话框
(3)默认情况下,系统自动将选取整个数据清单作为数据源,如果数据源区域需要修改,则可直接输入“选定区域”,或单击【浏览】按钮,从其他的文件中提取数据源。确定数据源后,单击【下一步】按钮,系统弹出【数据透视表和数据透视图向导—3步骤之3】对话框,如图2-53所示。
图2-53 【数据透视表和数据透视图向导—3步骤之3】对话框
(4)在【数据透视表和数据透视图向导—3步骤之3】对话框中,单击【版式】按钮,出现【数据透视表和数据透视图向导—版式】对话框,如图2-54所示。
(5)【数据透视表和数据透视图向导—版式】对话框中,再根据需要,将右边的字段按钮拖到左边的图上,这里,将“销售人员”拖到“行(R)”图上,将“商品”拖到“列(C)”图上,将“数量(台)”和“金额(元)”拖到“数据(D)”图上,如图2-55所示。
图2-55 设置数据透视表的版式
(6)设置好版式后,单击【确定】按钮,则系统就返回到图2—44所示的【数据透视表和数据透视图向导—3步骤之3】对话框,然后单击【完成】按钮,数据透视表就完成了,如图2-56所示。
这样,通过图2-56的数据透视表,即可看出每个销售人员所销售商品的种类、数量、销售额及其合计数,从而以此为基础可很方便地对每个销售人员的销售业绩进行评价。
图2-56 各个销售人员销售商品的数据透视表
在图2-56所建立的数据透视表上,可以很方便地进行多角度的统计与分析。比如要了解李四所销售商品的情况,可在“销售人员”下拉列标中只选中“李四”,然后单击“确定”按钮,则李四的销售情况如图2-57所示。
图2-57 李四的销售情况汇总
还可以建立透视图,方法是:单击数据透视表中的任一单元格,单击鼠标右键,在快捷菜单中选择【数据透视图】项,则系统自动显示出数据透视图,从而得到每个销售人员的更为直观的销售情况。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16