
EXCEL数据分析处理(3)
高级筛选可以使用较多的条件来对数据清单进行筛选,这些条件既可以是与条件,也可以是或条件,或与条件,与或条件的组合使用,还可以使用计算条件。
1.一般情况下的高级筛选
利用高级筛选对数据清单进行筛选的步骤如下:
(1)首先应建立一个条件区域。在条件区域中,同一行中的条件是与条件,也就是这些条件必须同时满足;不同行中的条件是或条件,也就是这些条件只要满足其一即可。如需要查找张三销售彩电的所有记录,则建立条件区域如图2-45所示。
图2-45 建立条件区域
(2)单击数据清单或数据库中的任一非空单元格,然后单击【数据】菜单,选择【筛选】子菜单中的【高级筛选】项,则系统弹出如图2-46所示的【高级筛选】对话框。
图2-46 【高级筛选】对话框
(3)一般情况下,系统将自动给出了数据区域,用户只需在【条件区域】栏中输入条件区域(本例中为B19:C20,也可以用鼠标拾取单元格区域,此时在条件区域中将显示“销售明细清单!$B$19:$C$20”。
(4)高级筛选结果可以显示在数据清单的原有区域中,也可以显示在工作表的其他空白单元格区域,系统默认的方式是在数据清单的原有区域中显示结果。若需要在工作表的其他空白单元格区域显示结果,则在【方式】项中选中“将筛选结果复制到其他位置”,并在【复制到】栏中输入需要显示筛选结果的单元格(开头的一个单元格即可)。图2-47为在原有区域显示的高级筛选结果。
图2-47 在原有区域显示的高级筛选结果
当需要显示原始的全部数据时,可以单击【数据】菜单,选择【筛选】子菜单中的项目,在【筛选】子菜单中选择【全部显示】即可。
同样的方法可以进行建立或条件、与条件与或条件的组合使用情况下的高级筛选。
2.计算条件情况下的高级筛选
在有些情况下,筛选的条件不是一个常数,而是一个随数据清单中数据变化的计算结果,此时无法直接利用高级筛选进行数据筛选。不过,我们可以通过计算条件的方法解决。以例2-20为例(见图2-37),这里要找出销售额大于平均销售额的所有记录。步骤如下:
(1)在数据清单以外的任一空单元格内输入平均值计算公式,比如在单元格H20中输入公式“=AVERAGE(E3:E16)”,这里要特别注意的是存放平均值计算公式的单元格的列标不能与数据清单的任一列标相同,如图2-48所示。
图2-48 计算条件情况下的高级筛选
(2)设置条件区域,条件区域的列表可以是除数据清单中数据标题以外的任何文本,而筛选条件可在单元格B20中输入“=E3>$H$20”,这里要特别注意:必须以绝对引用的方式引用销售额平均值,以相对引用的方式引用数据清单中的数据。
(3)按照前面介绍的步骤进行高级筛选,其中高级筛选的数据区域为$A$2:$G$16;高级筛选的条件区域为$B$19:$C$20,则筛选结果如图2-48所示。
在对数据进行分析时,常常需要将相同类型的数据统计出来,这就是数据的分类与汇总。在对数据进行汇总之前,应特别注意的是:首先必须对要汇总的关键字进行排序。
例如,在例2-11中,要按地区进行自动分类汇总,其步骤如下:
(1)首先对“地区”进行排序,排序方法见前面所述。
(2)单击数据清单或数据库中的任一非空单元格,然后单击【数据】菜单,选择【分类汇总】项,系统弹出如图2-49所示的【分类汇总】对话框。
图2-49 【分类汇总】对话框
(3)在【分类汇总】对话框中,【分类字段】选项下选择“地区”,【汇总方式】选项下选择“求和”,【选定汇总项】选项下选定“数量”和“金额”,单击【确定】按钮,则分类汇总的结果如图2-50所示。
图2-50 按地区分类汇总结果
在图2-50中,左上角有3个按钮,按钮1表示1级汇总,显示全部的销售数量和销售金额汇总;按钮2表示2级汇总,显示各地区的全部销售数量和销售金额汇总;按钮3表示3级汇总,显示各地区的销售数量和销售金额的汇总明细及汇总额(即图2-50所示的汇总结果)。
图2-50中,左边的滑动按钮为隐藏明细按钮,单击此按钮,则将隐藏本级的明细数据,同时
变为显示明细按钮
,再单击
按钮,则将显示本级的全部明细数据,同时
变为
。
在上述自动分类汇总的结果上,还可以再进行分类汇总,例如再进行另一种分类汇总,两次分类汇总的关键字可以相同,也可以不同,其分类汇总方法与前面的是一样的,此处不再介绍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16