京公网安备 11010802034615号
经营许可证编号:京B2-20210330
四步解读SEM账户如何做数据分析
四步法:分析账户整体数据趋势->通过2/8原则选择优化样本->通过四象限法确定优化方向->对应漏斗分析优化因素。
一、分析账户整体数据趋势
1.按推广时间&周期整理好三个基础数据:消费、点击量和展现量;
2.对应查看平均点击价格CPC和点击率CTR的趋势;
3.找到波峰波谷出现的时间点,并分析其出现的原因;
4.良好的数据表现应该是CTR呈上升趋势,CPC呈下降趋势。
二、通过2/8原则选择优化样本
1.选定分析数据波动时间段;
2.选择消费占比80%的数据:20%的关键词占了账户总消费的80%,则需要把这20%的关键词找出来。①对于小型账户,可以一个关键词一个关键词全面进行分析;②对于大型账户,利用2/8法则找到矛盾点。需抓主要矛盾,按照推广计划和单元,选择主要分析样本。
三、通过四象限法确定优化方向
Ⅰ象限>高转化高消费:通用词或产品词居多,优化方向:提升关键词质量度,同时提高网站咨询和线下成单率。
Ⅱ象限>高转化低消费:品牌词和企业自身主营业务词,将此象限关键词作为种子词,进行拓词,测试并挖掘出更多优质关键词。另外可拓宽低成本关键词匹配模式,获得更多展现机会。
Ⅲ象限>低转化低消费:放低处理的优先级,先解决其它象限的问题,或尝试短期内放弃低转化低成本而测试转化量提高的方法。从此类词中继续划分子象限,按照2>1>3>4的顺序,漏斗全程调整。
Ⅳ象限>低转化高消费:此类词竞争大,成本高,常亏损,可先尝试降低成本往Ⅰ象限靠。优化后仍无起色则可暂停或删除。
四、对应漏斗分析优化因素
1.展现量影响因素:①账户方面:查看预算、地域、时段、账户结构是否存在不合理;②关键词方面:有消费关键词数量少,关键词类型较窄,需拓词,关键词匹配限制,关键词排名过于靠后(质量度或出价较低)等。
2.点击量影响因素:①账户方面:结构不合理;②关键词方面:排名位置不好(质量度或出价较低);③创意方面:相关性不好,吸引力不够。
步骤1-下载报告
步骤2-数据筛选
步骤3-数据下钻,定位原因
3.访问量影响因素:①访问URL打开速度有问题;②创意与目标页面相关性差;③网站吸引力不够。
测试1-尝试调整创意
测试2-访问URL的更换
测试3-调整网站结构或内容
4.咨询量影响因素:①网站建设方面:充分研究浏览者的兴趣、行为和习惯,保证网站的:美观性/专业性/互动性;②物料选择方面:选择跟潜在客户需求相关的关键词,围绕企业的业务及核心优势撰写创意。
5.订单量影响因素:①客服团队专业知识、沟通技巧、营销意识;②网站订单转化路径;③产品价格,公司经营,售后等方面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31