
ECharts,缩写来自Enterprise Charts,商业级数据图表,它最初是为了满足公司商业体系里各种业务系统(如凤巢、广告管家等等)的报表需求。以前这些系统的图表需求我们都是使用flash去实现的,百度分工很细,有专门的flash组同学去做这个事情,这就不可避免多了一个沟通环节,作为前端工程师无法独立掌控,不管是数据接口的设计,个性化的需求都得沟通商定。而且一个系统内会有很多个flash在不同场景下出现,他们并没有实现通用。加上乔帮主不让i系列上运行flash以及html5的火热,我们需要寻求一个解决方案。于是在2012年初,当时还是凤巢前端技术负责人的Kener-林峰在凤巢数据平台项目中尝试使用Canvas去做图表,他写了一个全新的轻量级Canvas类库ZRender,那可以说是ECharts的原型,虽然跟现在已经相去十万八千里了。
ECharts官网>>>
百度资深前端Erik回归后组建起了百度商业前端通用技术组,在前面提到的背景下加上前端团队的经理祖明的强力支持,数据可视化成为了通用技术里一个重要的研究方向, 林峰也就这样顺理成章的从凤巢技术负责人转到现在的角色,百度商业前端数据可视化团队负责人。痴狂于web3d的技术天才沈毅,沉迷图形图像的杨骥,有SVG/GUI实战经验的宿爽,对颜色如数家珍的陈怀木等等来自一线的工程师加入组建起了可视化团队。
正如前面提到的,ECharts来自ZRender,那时的ZRender是包含图表功能的,甚至拖拽重计算已经在那个时候被实现了,但各种图表数据逻辑与图形渲染耦合,非模块化,Demo时随心所欲的特殊定制,我们意识到这是一个糟糕的设计。ZRender做了第一次大规模的重构,抽离了一切图表相关功能,纯粹的作为底层Canvas类库使用。
而被抽离的图表逻辑构建成为ECharts 0.1版本,但基本仍旧属于Demo状态,因为接口不规范,个性化能力和通用性都太差了。Erik和林峰,以及3位来自Flash组的资深工程师(百度商业系统中多年来所做的各种flash图表基本出自他们或者是他们所带领的团队),花了近2个月时间先后开了6次会议终于制定并发布了百度图表库标准1.0版本。这份标准是在几乎没考虑实现成本的情况下制定的,追求设计的合理、高度个性化的扩展能力,可想而知,这是给团队挖了一个很深很深的坑,在紧接着的近10个月时间里ECharts团队就是看着文档一步一步从这个坑里爬出来。
幸运的是我们真爬出来了,2013年6月30,ECharts发布了1.0版本,这份标准完全成为了ECharts 1.0的API文档,而且我们还加入了更多的数据交互能力。虽然这份标准目前已经成为了ECharts文档的子集了,但它的重要性不容置疑,回过头看这段历程,我们衷心的感谢制定这份标准的5位工程师(林峰、赵庶、Erik、刘阳、杨冬),在我们看来接口设计的合理比起实现成本重要得多。
ECharts缘起公司自身的业务需求,但开源使得它得以发展,虽然业界已经有多如牛毛的JS图表库,但ECharts带着颠覆性的功能设计和技术特征,发布后得到了业界高度关注和好评,迅速成为国内数据可视化领域的“后起之秀”,先后在CSDN、ITEye、InfoQ、中国统计网、统计之都等主流技术媒体上有专题报道,被开源中国收录后即被列为精选做了长达一周的首页首位推荐,收藏数超过了1000,github上发布12个月后star数超过了1900,已经成为了国内同类别项目中关注度最高的开源项目。被百度外100多家企业应用在新闻传媒、证券金融、电子商务、旅游酒店、天气地理、视频游戏、电力等众多领域。
令我们意外的是,ECharts仅发布半年入选成为了“2013年国产开源软件10大年度热门项目”,同时在“2013年度最新的20大热门开源软件”中排名第一。除此之外,ECharts还得到了跨领域以及国外技术团体关注,如在R领域就同时出现国内外多个版本的扩展,听说还有两家亚太地区金融咨询企业正在研发基于ECharts的BI类产品,甚至还有人拿着ECharts跑到纽约市长数据分析部门做应用推广。这都是我们的意外收获,感谢大家的支持。
下面是ECharts部分图表展示:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02