
全球第一家大数据上市公司Splunk
大数据概念最早由全球知名咨询公司麦肯锡提出,在2010年左右成为业界、媒体以及大众中的流行词汇,包括Splunk在内的一些主打大数据概念的企业也在这些年快速扩张,业务范围覆盖北美、亚太、欧洲、非洲及至中东等地区。2012年4月19日,Splunk在纳斯达克成功上市,成为第一家上市的大数据处理公司,并在首个交易日以109%的涨幅撑开了人们对大数据的想象空间。下面,36大数据将带领大家一探大数据龙头股Splunk的究竟。
点击可看大图
Splunk是商业智能软件提供商,其软件平台可以实时对任何APP、服务器或网络设备的机器数据进行索引、监控与分析,并将结果生成图形化报表,在此基础上帮助客户避免服务性能降低或中断。这些机器数据可以是日志、配置文件、消息和告警等,既可以来自本地也可以来自云,并且是动辄TB级别的、部署于成万千上万台服务器的数据,简言之,就是所谓的大数据。
面对爆炸式增长的数据,企业需要挖掘大数据中的潜在价值,以便更好地进行应用管理与运营管理,增强整个公司与组织的洞察力。Splunk的业务显然迎合了大数据时代企业对数据应用的需求,其业务功能主要分为五大块:IT运营、应用管理、安全合规、网络智能与商业分析。此外,Splunk的搜索功能异常强大,被称为“Google for IT”。
Splunk的产品有免费和收费版,二者最主要的差别在于每天的索引容量大小(索引是搜索功能的基础),免费版每天最大为500M。如果需要海量索引量及更多的功能,例如分散式搜寻(Distributed Search)、排程告警(Schedule Alert)、权限(Access Control)等功能,则需要购买企业版,不同索引量的价格不同。
截至2014年1月,有7000多个客户在使用Splunk的产品和服务,其中70个客户是财富100企业,8个客户是全球10大公司。客户所在的行业从传统行业、科技行业到在线服务行业无所不有,下图所举例子显示其客户所覆盖的行业。在中国市场,Splunk的业务主要集中在电信、保险和银行业等,例如银联支付、民生保险、百联支付、国美电器、中国移动和中国电信等。
三个简单的案例大体呈现了客户使用Splunk能够为客户解决的问题。下面,我们将在对比相关公司与行业的基础上,分析Splunk的经营现状。
可比公司中,本节主要选择了Qlik Technologies(QLIK)与Tableau Software(DATA)。其中,前者成立早、上市也相对较早,拥有31000名覆盖100多个国家的客户,其产品能为用户快速整合数据资源,创造便于导航搜索的动态视觉应用;后者的成立时间与Splunk差不多,晚一年上市,在全球范围内拥有12000名客户,其产品主要是面向企业数据提供可视化服务,针对的是大数据处理末端的可视化市场,同时还为客户提供解决方案服务。
上图可见,Splunk和Tableau的规模相当,但后者的收入增长速度明显快于Splunk。Tableau在5月5日发布2014年第一季度报告,总收入同比上涨86%,并且与Splunk结为战略合作伙伴,希望二者的强强联手能进一步提升Splunk的业绩。
大数据公司由于产品的特性决定了其高毛利的商业模式,这样高的毛利率能否持续下去?我们觉得未来这三家公司的毛利率都应该回归到80%-85%左右的合理范围,当然,各项费用占比也应该同比下降,这样才能显示出高科技公司的leverage优势。
大数据概念正当时,此时不发力更待何时,难怪Splunk暂时顾不得扭亏承诺,连年加大营销支出、全球范围内搜寻客户。当大数据这一概念不再新鲜,相应的软件成为所有行业的标配之时,你要说服一个公司更换一款智能软件,远比现在向它们引介一款智能软件难,故Splunk趁热打铁开拓客户覆盖范围,恰恰是为了长远考虑的未来。在这样一个热门的行业,具有一定程度先发优势的Splunk有很多市场机会,当然也面临着巨大的挑战。
行业机会。互联网开拓的新世界已然过渡到信息过载的阶段,从海量数据中“提纯”出有用信息的需求将越来越大,尤其是对企业而言,排除冗余信息、开发既有数据的使用价值,意味着更优异的性能与更好的服务。从案例可以发现,无论是传统行业还是互联网行业,无论是商业领域还是非商业领域,公司或机构使用Splunk都可以在节省大量人力物力的基础上提升服务。随着世界经济的发展,大数据的使用将越来越普及,整个商业分析软件市场仍有很大的上升空间,并且没有地域限制,上文提及的三个公司的客户都是遍布全球的。奥巴马政府在2012年宣布投资2亿美元拉动大数据相关产业发展,大数据也戴着“未来新石油”的光环上升到国家战略的层面。根据IDC(互联网数据中心)的预测,作为大数据的细分领域之一,商业分析软件市场将以9.8%的年复合增长率在2016年达到507亿美元。
行业挑战与应对。这一行竞争者如云,并且在各细分领域占据多数市场份额的都是世界范围内的“大佬”们。如图所示,除了五个“大佬”以外的无数个小伙伴,包括本文所分析的三个企业,分食着商业分析软件市场不足40%的份额。在其它细分领域也是一样,五个“大佬”占据着大数据整个行业的半壁江山。排除可望不可及的“大佬们”外,仅仅在小伙伴群体中,Splunk还是很有竞争力的,它还很努力,在业绩方面,已连续7个季度业绩超预期,客户数、订单数与大额订单数都在有条不紊地增长中。其中,Splunk在上一季度拓展了500个新客户,客户总数达到7000,总订单数达到3000,包括467个大额订单(单价超过10万美元)。
今年3月与Tableau的结盟,更被视为单一业务公司中的强强联手:一个是专营数据整合平台的头儿,一个在可视化数据领域有公认的独到之处。事实上,小公司有小公司的好处,至少在销售额增长率方面,Splunk与Tableau都甩“大佬”Oracle好几条街,再考虑到Tableau的17,000个既有客户,Splunk的确走了“a nice move”。此外,在过去的一年,Splunk有两笔投资值得一提。一个是收购了面向开发者提升应用性能和质量的移动数据分析平台BugSense,可以弥补Splunk在移动领域缺乏深入探究的弱势;另一个是收购Cloudmeter,其产品通过超轻量级的代理端,捕获网络中的有价值数据,可以让客户提取数据更方便。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10