京公网安备 11010802034615号
经营许可证编号:京B2-20210330
隐式挖掘网站用户行为_ 数据分析师
如何了解用户需求?根据用户是否主动参与分为显式与隐式两种挖掘模式,因为显式的动静比较大,有很大局限性,所以为了保证结果准确性以及提高用户接受度,一般都采用隐式。
用户的日常交互行为会产生四类关键数据:鼠标移动轨迹、链接点击分布、页面浏览流、页面停留时间。通过用户的行为能反映用户的观点,同时利用访问的网页次序可以找出网页之间的隐性关系。
收集数据
1. Web服务器的日志(用户会话记录)
2. Web trends或类似的第三方共享软件(客户端分析,流量分析,可用性分析)
3. 自己开发的第三方软件/插件(需求自定义)
大型网站通常会把以上三种方法组合应用,大致原理就是给进入网站的用户赋予身份识别,每次产生交互动作就向服务器发回请求,通过时间和页面判断连接各个请求点并且记录下来。(算法不讨论)
过滤数据
1. 明确目标,定义核心数据。
2. 界定用户行为,利用多数人的行为来消除个人行为的主观性。
3. 对用户进行归类,确定数据类别
大型网站每天所产生的数据量是惊人的,所以常规需求一般都是定时或定量的分析。另外,额外的数据处理会减慢网站的速度,搜集的数据越多,潜在的负面影响越大。
习惯分析
1. 对用户浏览过的页面进行内容分析,根据信息主题对页面进行聚类。
2. 聚类过程中除了考虑页面内容相近程度,还应该考虑页面路径。
3. 把用户浏览行为对其兴趣的作用列入聚类结果,得到综合评估模型。
用户兴趣分偶然和稳定两种情况,其中偶然可以认为是随机变化的,稳定的挖掘又有基于内容和行为两种方式,在内容上表现有重复度、相似度等,在行为上表现有停留时长、点此次数、拉动滚动条次数等。
实际案例
类似系统、浏览器、分辨率的客户端分析,常见而且简单,略过。
关于鼠标轨迹、点击分布的可用性例子:
1. 跟踪用户在进行检索时的鼠标移动轨迹,可以获取用户操作的先后顺序、热点功能、动作曲线等一手数据,这些都是改善或简化表单的重要参考。
2. 在重要的页面进行详细的点击分布监控统计,主要检查信息呈现的易用性,看看有没有偏离设计初衷,经常更新,找到规律。
处理特定用户行为、用户群、用户来路的任务流例子:
1. 监控分布式注册流程,能够看到有多少用户填了表单、填完了表单,或者在某个步骤有异常流失。
2. 监控不同模块入口过来的注册用户,能够统计出各模块导入的有效注册量、百分比、成功率,以便合理调配资源。
3. 监控投放广告过来的注册量、注册成功率、转换付费用户成功率,以便明确广告的投入产出比。
4. 监控用户的纵深浏览行为,是测试导航可用性很好的办法,也就是说用户会不会在你的网站内迷路?
再次强调,这里的讨论仅限于后期研究的隐式挖掘,就是不去惊动用户,不让用户察觉的方法,完全通过技术手段拿到我们想知道的数据,再通过理论分析来改进产品。
之前在某上市公司全程参与了类似系统的开发,最艰难的部分还是在如何获取数据的基础建设阶段,但终归是一劳永逸的事情,对以后的发展有益无害。(文章来自:CDA数据分析师)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30