京公网安备 11010802034615号
经营许可证编号:京B2-20210330
除了数据分析师,你还要扮演这些角色
作为统计系的学生,读书时就常常参加各种数学建模竞赛,也参与过一些市场调研和咨询的项目。在这个过程中,让我印象最深的不是数据处理和分析,反而是与人沟通的过程。
研一时,我与同学组成的团队参与了一个旅游策划公司的项目。我们作为乙方为甲方提供数据咨询。我们自己做数据收集、设计调查问卷。这是一个很复杂的过程,既要保证访问者的认可性,由于成本原因群体也不能太大。根据统计数据,我们给出一个旅游者的行为画像,根据出行的时间、频率、花费、交通工具等变量,采用聚类分析的方法,对用户进行细分,看他们分别适合什么样的产品。
我们调查的范围是重庆主城区,采样涵盖到不同景点、不同年龄段的人群。在做调查之前,我们去跑各个景区,跟游客聊天,对旅客的情况有一个“摸底”。我们去跟游客接触,去问问题,沟通这个环节至关重要。
工作之后,我越发觉得,身为分析师要具备一定的“公关”技能。
毕业之后我去了一家第三方支付公司。消费者刷卡时的个人信息存在一定安全隐患,我负责做线下的伪卡防范工作,就是从历史的安全隐患数据中发现问题,总结特征,建立危险识别模型,最终当交易发生的时候,通过概率值判断是不是盗刷。
风险控制是公司业务的支撑部门。公司的互联网业务会带来很多用户,支付是其中必不可少的一个环节,也是互联网金融的基础。
然而这是一个新行业,这意味着你没有扩样本。从几率学角度来讲,凡是有监督的模型,比如输入1到20个变量,输出只是一个变量,它只告诉你是或否,但拒绝还是不拒绝要自己判断。所以我需要去训练,训练是来自于历史数据的积累,没有历史数据就带来很大的困难,只能尝试建立半监督模型,在没有数据的情况下养数据。
我们提倡数据多维度、多样性,但你的数据权限可能是有限的,资源是有限的。在这个过程中你就需要接入其它部门的数据。你如何说服对方为你提供数据,这需要一定的沟通技巧和巧妙的专业呈现,让跨部门的同事信任你。
这个工作不能着急,要持续不断地沟通交流,时不时把你正在做的事情给对方看,让他了解你工作的内容,看到你的努力。
举个例子,在进行风险控制时,不可避免地会把用户体验降低。比如你在网上购买理财产品,注册一个账户,对密码的复杂度要求不够严谨,用户可能会觉得注册过程很方便流畅,但会带来风险。反之,比如12306以前出现过信息泄露的问题,它现在的验证码就变成图片验证,但过于麻烦,用户体验就不好。
产品部门的同事会考虑风险控制会降低用户体验,让用户流失。但如果后期出现了安全问题,你做的东西帮助他规避了风险,他就会理解你的工作,愿意用你的东西,所以你做的东西一定要有价值。对于这个问题,我们有时也会进行灰度测试,比较A版本和B版本在转化率上有什么差异,不断调整,在风险控制和用户体验之间找到一个平衡点。
销售
根据支持的工作,帮助他们的区域市场分析哪个项目是可以做的,该往哪个方向发展。我可以参与他们的销售会议,协助制定销售目标。在这个过程当中,我可以学到销售部门的人员是怎么考虑问题的。
后来又去了平安保险实习。当时去了平安产险管理部,我主要负责车商渠道的数据管理。比如,我想把一个保险卖出去,我们与车辆售后网点以资源换资源的方式合作。例如客户的车出现问题之后,他首先联系保险公司,保险公司再给客户推送网点。在推送的过程中,A店、B店怎么分配资源、具体的成本多少,需要建立一个模型,把推送方案最优化。建立模型时,你就需要有销售人员的思维。
杂家
想做数据分析师的同学学科背景不同,学计算机的编程很厉害,数学的更擅长纯理的东西。以我的经验来说,企业里许多岗位偏好学统计的。
如果做数据挖掘,偏理论性,可能喜欢用数学专业的学生;在企业里,经营管理、经营分析、风险管理等相关岗位更喜欢用学统计的;大数据中心涉及到数据产品的开发,更偏向于学计算机和数学的,但这都要求有一定的统计学思维。比如我看到一个数字的时候,我要联想它背后代表什么意义,看到A问题的时候不孤立地去看,善于与总体情况联系对比,既要看到总体也要看到差异。即便不是学统计出身,也要在平时的学习工作中训练自己。
互联网金融行业对人才的需求很大。我们招聘人才,一是要看你对金融产品的理解,二要看是否具有数据思维,具有一定的数据分析技能。还有一点很重要,要有热情,这个工作要重复很多事情,但不是机械的重复,也要进行思考,这都需要热情的支撑。
我建议同学们除了要打好基本功、熟练掌握1至2门编程语言之外,还要多接触数据,培养对数据的感觉;同时多研究不同的商业模式,研究不同的公司是怎么赢利的,天文地理历史人文,知识面要广博多样,让自己变成一个杂家,这可能会让你的数据分析工作更有想象力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12