京公网安备 11010802034615号
经营许可证编号:京B2-20210330
电商分析:网站运营不得不做的用户分析
当电子商务网站成功地把一个访客转化成一个客户之后,如何提高这个客户对于网站的忠诚度,继而增加客户对于网站的整体贡献值就变得非常重要了,因为带来一个新客户的成本是维护好一个老客户的3 ~5 倍。只有有效地提高每个客户的消费,才能快速提升电子商务网站的整体收入。
最有价值客户的特征
在我们的客户库中,有些客户是我们必须要保留的,而有些客户的价值是相对有限的。这里虽然说得有些现实,不过我们必须意识到,为最有价值的客户提供最优质的服务、提高他们的忠诚度,是我们电子商务企业能够长足发展的基础。
1.建立CRM(客户关系管理):建立CRM的最主要原因是为了帮助我们了解客户,那么客户的信息越详细、越准确越好。建立了CRM之后,客户管理就会便捷而且系统化和流程化。
2.构建客户综合价值模型:我们可以通过客户综合价值模型来评估并选出我们最想要保留的客户。客户价值评估模型的搭建,综合衡量了客户五个方面的表现:客户当前贡献度、客户未来贡献度、客户信用度、客户忠诚度、客户成长潜力。
3.用客户生命周期模型提升收入:通过决策树算法我们能调整适合我们的客户生命周期,最后制定针对不同生命周期的营销策略。通过划分生命周期,我们能解决基本客户细分的问题。
如何把客户黏在我们的网站
通过数据分析,我们可以提高客户的黏性。也就是提升客户的平均停留时间,提升客户的活跃度,降低流失率。
提升客户平均停留时间:访客在我们的网站上停留的时间越长,越有可能发现网站上其可以购买的商品和感兴趣的内容,从而成为重复消费客户。 我们可以根据客户的浏览历史记录、购买记录做商品的选择分析,以及根据客户的喜好分析来找出推荐商品。
客户活跃度分析:平均访问次数、平均停留时间、平均访问深度是客户活跃的关键数据点,当我们能够成功提升访问次数、停留时间和访问深度这三个数据点之后,客户的活跃度自然就提升了。
做客户流失分析:对于通过数据挖掘提供的潜在流失客户名单,运营经理或者总监可以设定一个“挽留体系”,尽可能留住我们需要的客户。
客户需要什么商品
留住客户,我们需要更懂客户。个性化推荐系统的最大优点在于系统能够收集客户特征资料并根据客户特征,如兴趣偏好,为客户主动做出个性化的推荐。当我们还没有一个完善的定制化系统之前,我们可以从局部出发。比如,我们可以在运营中回答以下这些问题:
如何找出热门商品:我们找出热门商品的一个重要目标是为了让这件商品带动整个网站的销售,这可以从每天、每周和每月的销售记录中很容易找出来。
如何提高客单价:客单价是平均每一个顾客购买商品的金额,也就是平均交易金额。提高客单价能够有效提升电子商务网站的整体销售额。这里可用的是数据挖掘中的推荐算法。
如何找出潜在的热销商品:我们需要对商品进行分类,而这里商品的分类不是指商品类别上的分类,而是指对于商品在销售上产生价值的深度分类,可以采用数据挖掘中的决策树分类算法。
如何找出匹配的商品:商品推荐是和商品相关的,所以对于每一件商品,系统都会尽量选择它的关联商品。当客户选取了某一个商品后,在网页的下方会出现根据关联算法做出的商品推荐。这里用到的是数据挖掘中的关联算法。
不得不谈的KPI
KPI是关键绩效指数的英文首字母缩写,是用来衡量运营质量的专用数据。KPI的制定和执行可以说是电子商务企业管理最重要的步骤。KPI制定不合理,对整体的系统运营没有帮助,甚至过于强调一个不该属于关键指标的指标,会使得我们在运营中舍本求末。而如果忽略了一个关键指标,那么这样的KPI可能不会有太多的效果。
设定KPI的一个要素就是关键指标的数据点选择,KPI不可能关注所有的数据。一般来说,KPI的指标个数应当是三到五个,再多就会丧失“KPI”中的“K”(Key,关键的意思)的含义,成为“PI”了。
我们从运营指标开始,设立包括用户行为指标,用户价值指标和营销活动指标在内的一系列指标,把大的运营目标分解成阶段性和局部性可以实现的目标。从上到下把KPI指标分解成各个可以实现的子指标。
对用户行为指标而言,运营部门可以设定对于每一个子指标的具体数值。例如:到12月31日,平均访问深度要在1.6以上,平均停留时间要在27.1秒以上,跳出率要在70%以下,平均访问次数在1.2以上,而转化率需要在2.8%以上。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06