京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代如何赢得财务人才
们的数字世界正在像小宇宙一样呈爆发式扩张,到2020年,数据将会从4.4万亿千兆字节增长到44万亿千兆字节。根据IDC分析机构的最新数字显示,全球数据量每两年就增加一倍以上。那么问题来了,谁在使用这些数据呢?他们又通过这些数据获得了什么?
事实上,通过大数据获取的洞察早已超过了数据科学家的业务范畴,这些洞察深入企业业务的核心,影响到企业的利润和损失、投资和撤资决策、风险管理和增长预 测等等各个方面。在这一领域,企业的“首席财务官”是当仁不让的关键人物,他们肩负着了解这些信息,并将其有效传递给企业其他部门的重要使命。
在首席财务官的领导下,财务部门将逐渐从幕后移向台前,担负起新的业务模式,例如确认、监测,管理财务风险和报酬。他们需要深入挖掘海量数据以获取价值,随后能够把这些价值传递给市场、人力、销售和企业的其他部门,以帮助这些部门制定战略并找到解决方案。
与过去相比,这些工作需要财务人才具备更广泛的技能。根据WSJ Custom Studios与甲骨文合作发布的最新报告显示,商业领袖们正在调整他们的招聘战略,以确保他们的财务人员能随时准备好应对这个新的大数据时代。
纽约大学Langone医疗中心首席财务官Mike Burke表示:“我们招募的人不一定是拥有会计学位的财务人员”。相反,我们更需要的是那些知道如何使用数据中深藏的价值的人才,是那些了解编程,能够查询大量交易系统的人才。
但是有些时候,作为财务专业人员还需要更多的分析思维。他们还需要具备软性技能,即能够在整个企业范围内激励、动员和引导其他部门之间的协同合作。
专业性化学品公司禾大(Croda)的首席财务官表示:“软性技能是必要的。你不能指望财务功能完全像一个大型的计算机系统一样,不需经过培训就能告诉你所有东西,或者希望其他同事能立即了解那些对财务人才来说显而易见的东西。”
根据麦肯锡的报告显示,到2018年将会出现19万分析技能员工的缺口,以及150万大数据领域管理人员和分析师的缺口,而这仅仅是在美国。
甲骨文全球金融业务高级副总裁Ivgen Guner在内部人才培养中获得了巨大的成功。她的部门曾经招募了一名毕业生,她一开始只是处理一些入门级的任务,随后这个年轻女孩展示了她在面对挑战和 激励他人方面的天赋。Guner和其他同事的严格辅导磨练了她在数据分析和与人沟通方面的技能。现在这个年轻女孩已经成长为甲骨文副总裁,当部门需要灵活 的分析和协调软技能的时候,她总能担当重要的角色。
让财务专业人员能够使用最创新的技术是OvationBrands首席财务官Keith Kravcik采用ERP云解决方案的原因之一,这一解决方案是这家总部位于明尼阿波利斯的连锁餐厅实现了财务现代化。
Kravcik希望能帮助Ovation进行重新改造,通过采用基于云的财务和绩效管理,他得以对其位于美国的300多家连锁餐馆进行全面的业绩观察。 Kravcik回忆道:“我们之前使用的一个老版本的Excel,一些新员工甚至都没听说过,更别说有任何经验了。为了吸引我所需要的分析型人才来推动我 们的重塑战略,我必须部署最先进的技术,让候选人能够在他们所选择的设备上使用最新的分析工具。云交付模式为我的财务团队提供了很多先进的技术体验,更易 于使用、成本更低。”
现代化的财务部门需要“软硬兼备”的人才,不但需要具备基本的财务技能,还要能够与其他业务部门协调、谈判、沟通、做出正确的战略判断,还有一点更重要 的,就是掌握最新的技术。当然,要找到拥有多元化技能的人才并不容易。企业需要对合适的人才进行投入和培养,并让他们获得最先进的技术和工具。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28