京公网安备 11010802034615号
经营许可证编号:京B2-20210330
起底英特尔大数据
继云计算之后,大数据迅速跻身IT领域热词排行榜。至于大数据概念啥的,这里就不多说了,每个人都有每个人的理解,关键是要从海量数据中挖掘出有应有的价值,这也是当下大数据领域的专家、厂商所致力研究的东西。作为全球知名的IT企业,英特尔给人的印象可能更多体现在处理器、网络、SSD方面,但其实它在大数据领域已经由来已久。
那英特尔在大数据领域主要开展哪些工作?比较具象的大致可归结为三条,一是推动开源社区的发展,像人们比较熟知的Hadoop、Spark社区,英特尔都是重要的贡献者;二是通过与业界伙伴合作,完善IA架构上的用户体验;三是基于IA架构进行大数据的优化工作。这部分工作主要由英特尔SSG(Software and Service Group,软件和服务集团)中一个专门针对大数据领域的团队负责。
说完了比较具象的,下面说说比较前瞻性的,这部分主要由英特尔研究院来推动。用英特尔中国研究院院长吴甘沙的话说,他们就像是探子、侦察兵,小股部队负责在前方探路。比如SSG在做Hadoop的时候,研究院已经在研究流处理、图计算、内存计算等;等SSG开始做内存计算、流处理了,研究院已经开始研究一些其他的技术了,比如其现在重点关注的至强+FPGA加速技术。
当然,这些也并非英特尔在大数据领域的全部家底。何以见得?吴甘沙在接受采访时说,最早安迪·格鲁夫在成立研究院的时候对于研究院的职责有着清晰的界定,一到三年内能够进入市场的,就不应该由研究院来做,应该交给SSG。五到七年才进入市场,抑或相对比较远的,或者风险非常大的工作也不应该由研究院来做,应该交给大学。
从他的回答中不难看出,英特尔对于一项技术的布局是有着非常长远的规划的。所以,可能你对英特尔在大数据领域所做的事情还不太了解,或者说英特尔向外界所传递的信息还不够,但其在大数据领域的深厚底蕴是毋庸置疑的,相关案例也有很多。
比如在采访中,英特尔亚太研发有限公司物联网解决方案与产品事业部商务开发经理顾典就举了几个比较典型的应用案例,一个是在交通领域。英特尔和中交兴路合作,在其商用车上部署基于Quark的车辆监管设备,通过该设备采集车上相关传感器的信息,包括驾驶员的驾驶行为、车辆行经路线等,然后传输到后端大数据集群当中做实时分析,最终可以帮助他们节省10%的油耗。
还有一个典型的案例就是优酷,作为国内最大的视频网站之一,其曾经有一个大数据分析的应用程序的性能一直不是特别好、运算速度不是特别快,后来英特尔建议其转到Spark平台,并相应的做了指导、优化,最后的结果是通常需要80分钟的数据处理时间缩短至了5分钟。
至于具体案例还有很多,这里不再一一列举。放眼未来,英特尔在大数据领域的脚步肯定会走得更快。就像前文提到的至强+FPGA就是英特尔面向最近火热的深度学习(Deep Learning)领域所做的尝试。同时,吴甘沙表示,以用户为导向,英特尔将更加关注一些有需求但能力却可能不够的一些场景。比如中小企业的大数据应用问题。
他具体解释说,其实这类场景有很多,包括中小型电商、垂直电商等。举个最简单的例子,一个电商是卖鞋帽衣服的,一个电商可能是卖化妆品的,他们对于用户的定位不一定非常完整、精确。而事实上买这一类化妆品的可能就会买这一类的衣服、鞋帽,它们之间是有相关性的。但因为他们是垂直的,规模又比较小,并没有这样的认识,所以迫切需要和其他的垂直电商和行业伙伴做数据共享和交换。这样问题就来了,一方面他们怕数据失控,另一方面自己也不知道数据值多少钱。所以需要有一些基础保证,第一,数据融合、分析要足够安全,第二需要有一种很好的方式来确定各方的数据价值几何。
还有另外一个场景英特尔一直在做的,就是健康。吴甘沙介绍说,健康相关数据的管理是非常严格的,美国专门有一个条例HIPPA,非常严格地限制数据的交换、流通。这也一定程度上使得在某些生命科学或者医学前沿的进展比较缓慢。比如癌症,经过50年发展,其治愈率只提升了8%。为什么?因为癌症是“长尾病症”不同地方有不同的癌,而且它没有明确的特征。没有足够的样本,导致不同科研院校的研究进展非常慢。有没有可能让各方非常放心的把数据汇聚到一起来做癌症的研究,这也是英特尔非常关注的一个方向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28