京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析价值渐现 企业应用需以客户为中心
在全球化的过程中世界已经变成了一个平面、一张网、一朵云,在其中数据就像血液一样不停的流动着。对于企业而言大数据分析可以很好地优化业务,在降低成本的同时提高用户体验,当然大数据分析应用到具体企业时也需要根据不同的业务特性进行结合,未来企业中以客户为中心的大数据应用将成为重点方向。
大数据分析辅助业务转型
温水煮青蛙的故事估计很多人都知道,在安逸的环境中很容易缺乏危机意识,企业也是相同,但如何才能不做温水青蛙?
企业中已经有越来越多的高管开始关注IT,不仅限于CIO。而在信息爆炸的年代,企业需要更多的数据科学家来进行数据分析,甚至一些企业还设立了CDO(首席数据官)的职位,对大数据和分析进行单独的管控。
这相对于没有数据提供参考往往依靠直觉和过往的经验作出决策的企业,他们有个大的几率走进不可挽回的误区,而利用大数据和分析则可以更好、更快速的对业务和市场把脉。
2014年4月埃森哲调查了全球高管眼中大数据的最大作用,其中89%的高管认为大数据会彻底改变做生意的方式,就像互联网一样,他们还相信会有其他巨大变化。
业务转型是目前大多数企业的普遍需求,大数据分析不仅可以优化访问、加快决策、最大程度提高可用性,还可以辅助业务转型。但企业在使用大数据分析时也并没有想象的那样简单,使用其实现业务转型需要注意三点:
一、决策文化改变,以数据驱动决策
二、确保分析数据的安全性和准确性
三、大数据分析平台应用
越来越多的企业已经意识到之一点,但企业的种类多种多样,针对于不同企业业务大数据分析应用也有所不同。所以未来企业需要在了解业务的同时,将业务与大数据分析进行结合,以创造更多价值。
大数据应用与业务相结合
目前在传统行业中金融、电信、政府、交通、医疗已经成为大数据分析使用的主力。
以金融行业为例,通过大数据技术可以把银行的一些历史数据转换成活数据加以利用。当然金融企业也在尝试利用社交媒体的信息进行分析,这可以了解不同区域的用户对于理财的需求,以便企业可以基于不同区域提供符合该区域特色的理财服务。
民生银行作为中国第一家主要由非国有企业创办的银行,年交易量和客户账户数量正在以50%和30%的速度增长。面对持续的高速增长,其所有业务都面临着如何快速响应客户和保证7*24小时可用性。
民生银行意识到要解决业务不断增长带来的问题,就必须彻底改造现有银行系统和基础设施,尤其是原有银行系统已经越来越缺少灵活应对市场变化和客户需求的能力。
民生银行通过SAP银行业解决方案以单一面向服务的架构(SOA)平台交付,提高银行交易流程的灵活性。在硬件上配以IBM AIX操作系统的IBM Power 780服务器。借助先进的 IBM POWER7+TM处理器技术, 支持最为严苛的工作负载,具备大型机的可靠性和可用性。
民生银行还采用了IBM PowerVM虚拟化技术充分利用服务器资源,将多个应用合并到一个服务器上,提供更加灵活、动态的IT基础设施。使其可以迅速响应不断变化的业务需求,加快产品和服务的迭代速度。
同时利用IBM DB2高可用性灾难恢复(HADR)功能防止数据库中的数据丢失,并且保证故障后的款塑恢复,时间低于五分钟。
民生银行只是其中一个案例,还有更多的企业正在使用着大数据分析帮助企业决策,提升用户体验,并以客户为中心造就越来越多的新型商业模式。
总结:
各行各业都开始大数据的应用已经毋庸置疑,这也让大数据分析对于企业基础架构的挑战同样迫在眉睫。IBM的服务器和存储架构则可以有效帮助企业解决大数据分析中存在的可靠性、可用性等诸多问题。支持安全共享的方式访问数据,对不同工作负载进行快速分析,以及最大程度提高信息的可用性,并且针对企业的行业属性和具体业务,制定相关的行业解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31