
该如何用好大数据
近一两年来,大数据是一个被频繁提及的词汇。不管是近几天麻涌举行的五矿物流麻涌基地发布会上,还是在智博会配套活动中国(东莞)云计算高峰论坛上,越来越多的企业和研究者对大数据产生了非常浓厚的兴趣。越来越多的东莞企业表示想要做好大数据运营,但是,大数据要用好并不容易。
大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。大数据技术,是指从各种各样类型的数据中,快速获得有价值信息的能力。
大数据听起来似乎很高深,但其实已经渗透到人们生活的方方面面。例如一个消费者在淘宝上搜索了泳镜,接下来他在打开许多网站时都会看到游泳衣、游泳圈等相关产品的广告。这,就是当前大数据营销的一个典型应用场景。
前不久,陈国良和石钟慈两名专门研究云计算和大数据的工程院院士在东莞进行了一次大数据的知识普及讲座。
据陈国良院士介绍,2012年3月,美国总统奥巴马在一次研究计划上提出了大数据概念。“大数据”的说法由此被全球范围采用,而在此前,国内的研究者一般称其为天文数据、海量数据或者巨量数据。不管是物联网设备的传感器、科学研究还是人们的日常生活,都会产生大量的数据。而善于用好大数据技术,则可以从这些数据中挖到“黄金”。
不过,陈国良也表示,大数据的结果很有价值,但千万不能陷入大数据独裁主义,人,才是大数据的第一要素。当然,要求所有企业都具有大数据分析能力。
陈国良所说的大数据分析能力,便是大数据的组成部分。随着大数据的应用日渐广泛,影响日渐深远,大数据思维的重要性也日渐显著。
大数据思维,就是能够正确利用好大数据的思维方式。大数据并不是指任何决策都参考数据,也不是要求所有问题都足够精准,更不是花巨资打造大数据系统或平台,而是在应该让大数据出场的地方把大数据用好。
要用好大数据,首先应该采集大数据。与传统的调查问卷等搜集信息数据的方式不同,互联网时代的大数据采集是“无限的、无意识的、非结构化的”数据采集。各种纷繁复杂的行为数据以行为日志的形式上传到服务器中,随用随取。此外,分析数据使用了专门的数据模型。最值得一提的是,大数据可以根据营销、决策等特定问题,从数据库中调取海量数据进行挖掘以完成数据验证,甚至可以得出与常识或经验判断完全相异的结论出来。
不少业内人士表示,很多时候,大数据的价值正是体现在这样与直观判断大相径庭的地方。对此,陈国良也表示,“大数据分析结果有时候没有理论支撑甚至无法证明,不过分析仍然有效,技术仍然在发展!”陈国良还为东莞有意进行大数据挖掘的企业支招说,大数据的获取,不能依靠随机采样,也不能强求精确性,甚至分析结果也难以解释其所以然,不过能用就好,以后可以慢慢再弄清其中的科学原因。
业内人士分析说,大数据的应用领域正在逐步增加。一方面,东莞企业可以通过大数据对用户行为与特征作出分析。通过大量数据可以分析出用户的喜好与购买习惯,甚至做到“比用户更了解用户自己”。此外,通过大数据可以支撑精准营销信息推送。让最精确的信息传递到正好匹配的客户手中。
另外,通过大数据可以让营销活动能够与用户能够产生“会心一击”的效果,这种基于海量数据的挖掘和匹配实现的精准信息,能够让企业有效地取得客户的欢心。
在陈国良眼中,云计算、物联网以及大数据是三位一体的,伴随着万物互联的趋势以及云计算逐步变得更加方便易得,价格低廉,大数据的应用场景以及应用的经济类型也都将得到进一步的加强。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03