
从道的角度来论述大数据对企业价值
本文更多是从比较高的层面,也许就是我们说的“道”的层面去思考大数据如何对于一个企业产生价值。有很多观点的值得借鉴,值得大家去深入思考的,本文更多是一个方向,一个比较“虚”的描述,如果你从事一段时间的大数据工作,或者数据分析相关工作,相信你对本文有一定体会。
但是,大数据价值的实现与真正“落地”,绝对不是一句简单的事情。一个企业如何让大数据产生价值,绝对不是一句口号。真的需企业方方面面去支持。前期在技术上就需要投入大量资源,例如:大数据相关开发人员,数据分析师,各种机器。
数据基础的建设,仅仅只是最基础的工作,真正要让数据对企业产生商业价值,不让对数据的基础投入成为摆设,则需要是公司的“文化”支持,不然会变成光是贴在墙上的口号:
“让数据说话!依据数据行事!”
“所有决策都需要数据支持!”
数据要产生价值要企业“文化”来浇灌,数据需要渗透企业“灵魂”中,这会涉及到企业很多人工作方式,流程,习惯,思维的转化。这往往是很“痛苦”的。一起看看这篇文章吧!
一、大数据使企业真正有能力从以自我为中心改变为以客户为中心
企业是为客户而生,目的是为股东获得利润。只有服务好客户,才能获得利润。但过去,很多企业是没有能力做到以客户为中心的,原因就是相应客户的信息量不大,挖掘不够,系统也不支持,目前的保险业就是一个典型。大数据的使用能够使对企业的经营对象从客户的粗略归纳(就是所谓提炼归纳的“客户群”)还原成一个个活生生的客户,这样经营就有针对性,对客户的服务就更好,投资效率就更高。
二、大数据一定程度上将颠覆了企业的传统管理方式
现代企业的管理方式是来源于对军队的模仿,依赖于层层级级的组织和严格的流程,依赖信息的层层汇集、收敛来制定正确的决策,再通过决策在组织的传递与分解,以及流程的规范,确保决策得到贯彻,确保每一次经营活动都有质量保证,也确保一定程度上对风险的规避。过去这是一种有用而笨拙的方式。在大数据时代,我们可能重构企业的管理方式,通过大数据分析与数据挖掘,大量的业务本身就可以自决策,不必要依靠膨大的组织和复杂的流程。大家都是基于大数据来决策,都是依赖于既定的规则来决策,是高高在上的CEO决策,还是一线人员决策,本身并无大的区别,那么企业是否还需要如此多层级的组织和复杂的流程呢?
三、大数据另外一个重大的作用是改变了商业逻辑,提供了从其他视角直达答案的可能性
现在人的思考或者是企业的决策,事实上都是一种逻辑的力量在主导起作用。我们去调研,去收集数据,去进行归纳总结,最后形成自己的推断和决策意见,这是一个观察、思考、推理、决策的商业逻辑过程。人和组织的逻辑形成是需要大量的学习、培训与实践,代价是非常巨大的。但是否这是唯一的道路呢?大数据给了我们其他的选择,就是利用数据分析的力量,直接获得答案。就好像我们学习数学,小时候学九九乘法表,中学学几何,大学还学微积分,碰到一道难题,我们是利用了多年学习沉淀的经验来努力求解,但我们还有一种方法,在网上直接搜索是不是有这样的题目,如果有,直接抄答案就好了。很多人就会批评说,这是***,是作弊。但我们为什么要学习啊?不就是为了解决问题嘛。如果我任何时候都可以搜索到答案,都可以用最省力的方法找到最佳答案,这样的搜索难道不可以是一条光明大道吗?换句话说,为了得到“是什么”,我们不一定要理解“为什么”。我们不是否定逻辑的力量,但是至少我们有一种新的巨大力量可以依赖,这就是未来大数据的力量。
四、通过大数据,我们可能有全新的视角来发现新的商业机会和重构新的商业模式
我们现在看这个世界,比如分析家中食品腐败,主要就是依赖于我们的眼睛再加上我们的经验,但如果我们有一台显微镜,我们一下就看到坏细菌,那么分析起来完全就不一样了。大数据就是我们的显微镜,它可以让我们从全新视角来发现新的商业机会,并可能重构商业模型。我们的产品设计可能不一样了,很多事情不用猜了,客户的习惯和偏好一目了然,我们的设计就能轻易命中客户的心窝;我们的营销也完全不同了,我们知道客户喜欢什么、讨厌什么,更有针对性。特别是显微镜再加上广角镜,我们就有更多全新的视野了。这个广角镜就是跨行业的数据流动,使我们过去看不到的东西都能看到了,比如前面所述的汽车案例,开车是开车,保险是保险,本来不相关,但当我们把开车的大数据传递到保险公司,那整个保险公司的商业模式就全变了,完全重构了。
五、数据发展对IT本身技术架构的革命性影响
最后一点,我想谈的是大数据发展对IT本身技术架构的革命性影响。大数据的根基是IT系统。我们现代企业的IT系统基本上是建立在IOE(IBM小型机、Oracle数据库、EMC存储)+Cisco模型基础上的,这样的模型是Scale-UP型的架构,在解决既定模型下一定数据量的业务流程是适配的,但如果是大数据时代,很快会面临成本、技术和商业模式的问题,大数据对IT的需求很快就会超越了现有厂商架构的技术顶点,超大数据增长将带来IT支出增长之间的线性关系,使企业难以承受。因此,目前在行业中提出的去IOE趋势,利用Scale-out架构+开源软件对Scale-up架构+私有软件的取代,本质是大数据业务模型所带来的,也就是说大数据将驱动IT产业新一轮的架构性变革。去IOE潮流中的所谓国家安全因素,完全是次要的。
所以,美国人说,大数据是资源,和大油田、大煤矿一样,可以源源不断挖出大财富。而且和一般资源不一样,它是可再生的,是越挖越多、越挖越值钱的,这是反自然规律的。对企业如此,对行业、对国家也是这样,对人同样如此。这样的东西谁不喜欢呢?因此,大数据和数据分析师这么热门,是完全有道理的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04