京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据改变零售业 电商加紧布局产业发展
2013年国社会消费品零售总额的增长速度喂13%,虽然保持了增长的态势,但整体增长速度趋于放缓。而相对于整个网上零售来看的话,增长50%,虽然相较于过去几年,网上零售速度已经放缓了,但是还是高于整体的社会消费品零售的增长速度。另一组数据,我们可以看到2014年上个季度的时候,网上零售占社会零售总额的超过10%创历史新高,在这样一个大的背景下,传统实体的零售是受到很大的冲击。
零售业大数据应用应运而生
首先从产业发展的需求来看,大数据可以帮助零售企业来洞察消费需求,零售企业在面临市场的变化,消费需求变化这样一个大的背景下,需要根据消费者需求的变化来调整我的战略。而这个时候就需要大数据技术来做支撑,在充分了解消费者需求的前提下,企业要重新定义自己的价值,这个时候也需要大数据来做支撑。第三个我们看到目前线上线下趋同这样一个趋势已经非常明显了,线上企业通过电商平台或者移动平台来发展线上的业务,线上电商企业来开展线下的业务,全渠道零售这种模式离不开大数据的支撑。从产业创新模式来看,一个是C2B,会把原来以卖方为主的模式转移到以买方为主,而由用户的购买来驱动企业的生产,在这个过程中需要三个支撑体系。一个是需要非常个性化的营销,第二个需要非常柔性化的生产,第三个需要社会化的供应链。而这三个支撑体系对大数据的要求和大数据的处理提出了更高的要求,这都离不开大数据的一个支撑。
第二个是一个O2O的例子,线上线下融合发展这是未来一个趋势,而在O2O过程中不可避免会产生大量的数据,怎么利用这些数据更精确的为消费者提供服务,让消费者快速的精准的找到自己想要的商品,以及如何帮助消费者购买到质量有保证的商品,这些背后都需要有大数据支撑。这是整个零售业大数据发展的一个契机。
具体来看,目前越来越多的企业已经把大数据上升到战略资产这样一个位置,从中国大数据市场整体规模来看,今年我们预计整体增长的速度应该会超过30%,预计到2016年,整个市场规模会突破100亿人民币这样一个规模。从整个零售企业数据的应用来看,应用率还不到5%,零售业大数据蕴藏潜力是无限的。中国零售大数据目前整体还属于市场启动的一个前期,零售大数据是从2011年在中国开始出现的,马上就受到市场很大的关注。这里我们可以看到像阿里巴巴在2011年底的时候推出了淘宝指数,帮助买家卖家第三方用户群体分析自己的产品走向,或者搜索的一些热点,或者一些销售数据的趋势等等。这个是在2011年底的时候出现的,而中国大数据目前我们判断是属于市场的启动前期。为什么?虽然说已经有很多应用出现,但是主要是在企业内部,进行企业内部资源优化配置这样一个过程当中,或者说资本市场虽然很关注,但是以大数据为核心竞争力来进行上市的企业还没有出现,所以我们判断未来三到五年,中国零售业大数据发展情况还是会从探索期慢慢步入到快速发展这样一个阶段,但是时间还需要三到五年。
接下来我们看一下整个零售业大数据的类型,按照企业的界限,我们可以把零售业大数据分成内部数据和外部数据这两种类型。而从线上企业和线下企业看,在企业发展信息化的初期,其实这个数据的量级,应该是从兆B到TB的级别,类型主要包括交易数据,比如运营数据,比如供应链的数据,比如用户的数据,这是零售企业数据主要的类型。而进入大数据时代以后,零售企业数据的类型从企业的内部扩展到企业的外部,而这个量级也从TB发展到ZB这样一个量级。数据的类型也从刚才提到的一些用户数据、运营数据、交易数据,目前已经发展到了外部一些交互的数据,直到我们的大数据,是这样一个走向。而现在我们来看线上企业和线下企业,从这边这个图可以看到,比如像店铺或者渠道这样一些数据,是具有线下这些属性的,是属于线下范畴。而像流量、转化率等等这些,是线上零售所特有的数据属性。这是整个零售业大数据的类型。
中国零售业大数据发展趋势
第一点是交叉串联,中国零售企业线上线下协同发展或者融合发展是未来一个趋势。怎么样利用大数据来实现线上线下企业交叉串联分析,这是大数据未来需要研究的一个方向。
第二个是价值衍生,可以理解成怎么样实现大数据充分的应用,有两个方向,一个是线上企业,线上企业的方向是把自己整个平台发展成一个数据产品,比如阿里巴巴首先他自己是一个平台,同时他具有自己的技术研发,衍生出来成为一个数据产品,这个产品既包括平台数据产品,也包括后来跨界的金融相关的一些产品。线下企业的做法,如果有多年积累的这些传统的零售企业,做法是我可以开放我的数据资源,比如国美就开放他们的供应链数据,通过与战略合作伙伴的数据共享,让数据价值发挥到最大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31