
案例:如何利用数据分析目标客户群
传统线下渠道获取消费者信息的方式一般是通过向数据公司购买数据,或者委托调研公司经过周密漫长的用户调研得出一份报告。而电商模式下,我们可以用更小成本获取海量交易数据,进而分析消费者特征,定位目标消费人群。
魔方的大量数据都是源自成交,可以帮助商家理解消费行为。举一个实际的案例:我们来查看“面膜”类目的成交数据,包括标价分布和客单价分布之间的对比。一个月内,面膜的成交商品标价分布最多区间是5.5~7元,而成交人数的客单价(消费者累计购买金额)分布最多的区间是58~67元,就可算出平均一个用户会购买的面膜数量为10片。
继续查看消费者的购买频次分布:在该时段内购买的消费者数量占8成,我们可得出大致的结论:一般购买面膜的消费者通常在一个月内购买一次,并且一次购买的面膜片数大概是10片。因此搭配销售、组合销售时推出10片装优惠套装,或者关联其他不同类的面膜,最符合消费者购物特性。大多数消费者在网上一次购买的片数是10片,只要套装组合不偏离太多,消费者在潜意识里就更容易接受卖家的商品。
而实际的抽样采访结论是:一般的女性消费者一个月内的面膜使用量约为4~8片。
再来看买家来访时间:不同类目的来访和购买时间还是有明显差异的,针对面膜类目买家的来访时间,就可以做出对应的限时打折或者定向促销,甚至可据此安排上下架时间。
面膜类目买家的来访高峰时段是下午14:00~15:00,次高来访时段是上午10:00~11:00,成交高峰时段方面,第一成交高峰是上午10:00~11:00,第二位的时段是下午14:00~15:00,来访和成交的高峰时段并不是一一对应。
致宁
我们更换一个类目查看,比如住宅家具行业的餐桌子类,可以看到来访和成交的高峰时段都在深夜。揣测消费者的购买常理就可以得到答案,那就是一般大件物品购买都以家庭为单位,不是下单者一人做出决策。所以掌握不同类目消费者的购物习惯,调整推广时段,对提升整个网店的转化率有很好的效果。
消费者数据中其他的重要维度,包括性别、年龄、地域分布,决定了消费群体的人口统计属性。在数据魔方里我们不仅可以查看某行业的人口统计数据,还可以查看某个具体品牌、产品以及属性下商品的消费者数据。以iPhone4S和SamsungGalaxy3为例,三星的男性消费者比例比苹果高;苹果的主力购买人群是18~24岁,和三星的25岁以上相比更年轻;江浙沪和珠三角地区对苹果的钟爱度更高。
而偏爱三星的人群更多分布在北方和西南等地区的城市,地域的差异性也是非常大的。
卖家想要更多地挖掘人群细分数据,可以关注魔方团队产出的免费数据产品“淘宝指数”(shu.taobao.com)。这个产品公布的一些数据可以简单分析出淘宝买家的人群细分,告诉卖家消费者都是谁,喜欢什么。
我们搜索“爱情公寓”这个前段时间比较热门的网络词语,可以看到以下数据:
首先是该词搜索和成交的消费人群层级处于中等,因为“爱情公寓”这个关键词下的很多商品都是电视剧《爱情公寓》演员的同款服饰,而且是夏季服饰,所以这部分商品本身单价就不高,消费也偏向中等消费能力的人。
买家等级和人群身份中,新手和初级买家较多,白领和学生占比较大,这个数据印证了上图的中等水平消费能力。
致宁
指数还提供了一些消费者的星座分布数据,该数据用于直接分析的可能性不大,但可以从这里挖掘一些数据的趣味性。
最后我们看消费者的爱好,其实这部分数据就是通过该消费者的关联收藏、购买的信息多维度定义消费者的兴趣点。通过打标签,帮助卖家更好地理解消费者形象。比如搜“爱情公寓”一词的人最多的是爱美女生(会买很多女装、女鞋等类目);同时她也是宠物一族(购买过宠物用品)等等。
如果你觉得这些数据还不够具体,不能落地到某个具体的宝贝和品牌的话,你可以查看“相关品牌”和“相关商品”,这些都能让你更进一步了解这群消费者的兴趣点。
可以查看到关联品牌下的相关宝贝,点击每个宝贝即可查看在淘宝上的链接。
除了上面说到的通过数据去做消费者研究以外,一些店铺、宝贝的图片页面展示也需要仔细研究。数据分析最终要落地到提高成交转化,所以对于网店而言,装修风格就是一种销售的语言,在你定位清楚你的目标人群是谁的时候,你需要知道他们喜欢什么风格,然后找到最适合他们的视觉系,这样子你所做的一切工作才会落地到转化。
互联网时代,做电商除了要熟知规则和数据分析外,最终落地还是宝贝陈列和描述。淘宝这么多消费者当中,女性居多,而女性多数是视觉系动物,如何引导她们去对你的商品感兴趣,除了强大的品牌背书以外,做好消费者研究,做好营销传播都是非常非常重要的。
希望本次探寻消费数据和定位目标人群,能为大家抛砖引玉,多提供一些思路去提升网店的运营。接下来我们还将努力挖掘淘宝行业数据的价值,为大家继续解析数据、诊断店铺。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04