京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据已经成为预测社会与经济走向方面的绝对利器——然而其极高的信息使用量与综合分析流程恐怕会彻底抹杀如今我们最为看重的隐私权。
随着企业间竞争日趋白热化,对数据的攫取与分析之强烈已经达到令人震惊的地步。迅速成长的数据收集业务开始以互联网用户的日常活动作为结论的支持材料,但这种无孔不入的疯狂探求令我们最个人化的行为都暴露在他人面前。
除了在宏观上构建社交模式及经济走向,大数据还能根据个人用户不经意间生成的原始数据描绘出对方生活的状态。
Target公司的客户关系分析工具借助大数据意外发现某位年轻女孩怀孕的秘密,而这一结论源自这位女孩在Target连锁店中的购物记录。尽管她(和她父亲)并没有向Target直接提供信息,但店面中的数据采集工具根据购买习惯推测出了她怀孕的事实,并以购物手册的形式向她推荐一系列相关产品——正是这本小册子让即将成为爷爷奶奶的两位家长目瞪口呆。
Facebook与谷歌同大数据的关系
Facebook的数据团队一直对网站上提供的发布信息进行分析,这种庞大数据量之下所蕴含的预测能力在深度与广度方面无人能及——这也成为研究人员、广告商以及各政府机构掌握状况的有力武器。
该团队通过用户对于歌曲风格的偏好判断对方的当前关系状态,并通过此类数据预测更为广泛的社会行为模式。在某个例子中,数据团队尝试通过一种算法归纳世界各地人民的“幸福指数”,所得到的结果确实能与当时真实世界中的某些大事件进行印证。
与此同时,谷歌公司在通过了引发无数争议的隐私政策修订之后,无处不在的互联网服务几乎令这家企业成为人类信息的总资源库,这就使得其信息为政府所用的日子为时不远。尽管最近谷歌刚刚通过网站对政府部门急于获取用户个人信息的举动表示抗议,但他们仍然指出未来谷歌会继续帮助国家掌握百姓的日常行为。
各国政府与大数据
世界各国政府对于个人数据的处理方法有所不同。美国政府正在采取措施,希望通过社交媒体收集个人资料,借以监控潜在的犯罪活动并改善国土安全保障工作。
美国国务院最近还要求软件开发人员打造一款工具,借以更便捷地对来自谷歌、Facebook及Twiiter等网站的数据进行分析,最终达到服务国家的目的。这一决定显示出政府方面对于收集并使用个人数据的强烈意愿。
而且国务院绝不是美国政府中惟一对个人资料紧追不放的机构——FBI甚至打算通过修改代码对社交媒体加以窃听。随着美国政府参与Stuxnet及Flame两款病毒制作的消息甚嚣尘上,很明显官方已经从网络监控中尝到了甜头,而在未来他们对个人数据分析的热情也必然会持续升温。
但随着公民对于自身安全保障的迫切需要,这些监控活动很可能与隐私保护产生冲突,由此引发的矛盾与争论可能比单纯的隐私权话题更难以平息。
大数据中的“大玩家”们如何对待个人信息
数据的生成方式并不一致,很多大数据玩家都会刻意避开个人信息的介入,而不像谷歌和Facebook那样来者不拒。Factual公司就在数据分析业务中有意将个人信息加以剔除,其公关代表Kathryn Huff在解释这种差别时指出“本公司专注于秉持正确的数据收集及切入点。”
然而与Factual不同,包括Spokeo在内的很多企业则毫无节操地直接进行个人数据交易,并在客户行为报告中加入很多令人难以接受的极端细节。举例来说,他们会在针对个人客户的档案中引用有关家庭成员及业余爱好的图片。这种规模化数据收集所产生的负面影响令人震惊,并可能在侵犯隐私权的同时降低企业的信用评分。
美国联邦贸易委员会曾经对Spokeo这种人神共愤的数据收集方式处以罚款,但该公司依然我行我素,可谓记吃不记打。
大数据收集如何应对COPPA(儿童在线隐私保护法案)
COPPA,全称为儿童在线隐私保护法案,要求企业不得收集13岁以下儿童的在线数据及行为细节。但由于该法案的约束对象不包括政府机关及非营利组织,这就使得儿童的网络行为信息仍然在包括美国政府在内的众多机构面前暴露无遗。
像Facebook与Collective Intellect这样的企业倒是属于法案约束的直接对象,但他们遵守规定的效果却很难令人信服。Facebook从技术层面上只允许13岁以上的用户建立账户,但事实上小朋友们利用各种方法避开了这一限制。另外,由于社交媒体自身有吸引年轻用户的意愿,所以改变现有数据收集方式才是解决问题的根本方法。
未来会怎样?
这些企业需要找到一条通过个人资料赚钱的道路,否则庞大的信息只会占用基础设施资源而无法带来任何收益。这对于普通用户及其隐私数据意味着什么?
首先,我们应该清醒地意识到针对个人习惯所开展的广告攻势已然铺天盖地,而这一趋势在未来还将持续加剧。网站以营利为目的,因此在需要时他们肯定会把有价值数据作为利益交换的筹码。届时广告公司将以针对用户需求为噱头大肆宣传,收集并分析个人消费习惯的做法也将成为常态。
此外,政府方面也会出于各种目的而继续整理并分析个人资料;虽然以Twitter为代表的一些社交媒体网站已经针对用户数据保护做出多方努力,但这种情况几乎不可能放缓乃至停止。换言之,开放性与流通性将成为个人资料的重要属性。
大数据,特别是个人数据分析,正在一步步吞噬公民的隐私权。如果没有来自政府及谷歌、Facebook等各大主流网站的决定性政策变更,这种趋势将成为互联网的固有特性,并在未来继续保持下去。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20