京公网安备 11010802034615号
经营许可证编号:京B2-20210330
建立大数据分析能力 四大要素必不可少
如今,企业都嗅到大数据带来的巨大价值,纷纷发力大数据领域,其中,建立大数据分析能力,是企业运用大数据的关键环节。领先的企业主要从四个方面入手建立自己的大数据分析能力:高质量的数据、先进的工具、精通数据的员工以及支持分析决策的流程和激励机制。
要素一:数据
任何一个企业都首先需要制定一个数据收集和整理的策略规划,这一规划必须明确定义如何利用大数据为企业的整体发展战略创造价值。好的数据政策明确定义了“什么是有用的数据”以及“如何从数据看我们的业务”。这些基本定义是一个企业如何建立自己的数据分析能力并将自己与竞争对手区隔开来的第一步。“什么是有用的数据”是所有数据政策的出发点和基础。
要素二:工具
先进的分析技术和大数据工具的进步如此之快,他们正以前所未有的方式帮助公司获取新的统计角度和结果。Hadoop、HPCC和NoSQL等工具和平台迅速崛起带来了全新的分析视角和机会;基于成熟的分析、视觉化以及数据管理的全新生态系统也以日新月异的速度改变着企业的分析能力。如今,可提供这类工具的供应商不胜枚举,开放资源的开发商数量更是不计其数。不过,令人感到些许意外的是,在我们的访谈中,仅有38%的企业表示他们曾使用过这些工具。
要素三:人员
成功的团队往往可以融合数据、技术和业务等各方面的人才来构建这一能力。以乐队为类比:团队的成员必须各自拥有不同的技能,但这些技能又有一些交叉重叠,同时他们非常了解互相之间如何进行有效和高效的沟通和协作。成功的大数据分析团队亦如此,我们需要:
数据科学家,提供有关统计、相关性和质量等的专业技能
商业分析师,从商业的角度出发,甄别数据科学家从纯粹数据分析角度发现的异常数据以及一般性规律,发掘出其中与公司业务发展紧密相关的数据和规律并根据重要性进行排序
技术专家,帮助提供收集、整理和处理数据所需的硬件和软件解决方案
要素四:决心
顶尖的企业将大数据分析的理念植入到组织当中,明确定义希望通过大数据达成的目标并运用数据推动决策。CEO和高层领导团队将枯燥抽象的数据分析与实际的公司经营绩效提升的紧密关系展示给企业的每一位员工:不论是通过改进现有的产品和服务、优化内部流程、构建新产品和服务或是转变商业模式等等。表现优异的公司无一例外地围绕数据构建组织并恪守数据驱动型决策的承诺。
很多企业在大数据分析能力构建方面并不尽如人意,企业若想在大数据分析能力构建方面取得出色表现,必须在以上四个要点的基础上,做到均衡的完美表现,而更多企业则在其中一两个领域较为突出,其实,每个方面的成功都离不开其他方面的优势支持。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31