京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析师到底都在做些什么
我认为数据分析的基础是知有常无常,一般建议采取的措施是挑肥拣瘦,目标是以更少的成本获得同等收入,另外还有一点比较难得是识别机会。预测其实应该也算,但是预测大多牵扯到技术性多一点,这里只讲理念。
知有常无常,换句话说就是知道数据变化的时候,哪些是正常波动,哪些是非正常波动,趋势是怎样的。一般通过同比、环比等等,去判断是否处于可接受范围内的波动,如果是异常波动,则要判断异常波动的原因。一般异常波动的影响因素都是通过排除法查找,排除的项目是变动项目的影响因素,比如销售额=访客数*拍下率*拍下付款率*产品单价*单客件数,销售额变动就会从等号后面几个因素去找。再细分比如访客数下降,则要细分各访客来源数量上的变化,成交付款率往往是由顾客对产品满足需求程度以及产品(相对)价格的判定决定的,如果判断越明确,则这个值越大,价格较高会加重犹疑,但是有时候产品价格升高时拍下付款率升高,可能的原因是高价格对拍下阶段的顾客已经做了过滤,剩下的都是成交意愿较高的客户(这个是观察最近雾霾罗汉果购买的变化,应该是瞬时流量增长带来的相对不确定人群对拍下付款率的稀释)。拍下率一般与(相对)价格关联比较高,其他还有页面描述、活动、评价以及服务承诺之类,大量不精准流量会带来拍下率的下降,而不精准流量的剔除也会带来拍下率的升高,所以要具体分析判断。单客件数受活动刺激以及包邮比较厉害。好吧,扯远了。
知有常无常,有个“知”字,如何做到知呢?以前靠的是经验,即假定在相似情境下会产生类似的结果,或者事物按照相似的轨迹发展,人们会按照模糊的数据去断定未来,但是假定很多时候不成立,按照固有预期去走的人很多会失败。有数据,但是只是判断数据表面输入输出的关系去支持决策,其实跟经验没两样。我认为除了利用已有知识解释原因外,应该想办法对结果进行验证,因为解释很多时候都是基于常识的假设,未必正确,经过稳健的验证的知识进入“知”的范畴。凭空生出可靠地想法是比较难得,经常生出的就很牛叉,因为很能生啊。好吧,又扯远了,其实讲的就是解释未必对,应该经常针对现象提出解释,尽量对解释验证。
挑肥拣瘦,就是在资源有限的情况下,把资源投入有潜力或者块头大(潜在利润?份额大)的部分,而对潜力小或者肉薄的部分维持、削减设置剔掉。对有望长成大树的树苗多浇水上肥,直到他不怎么长,再选择其他合适树苗,对长不大的树放任不管甚至砍掉以免影响其他树的生长(阳光水肥的分配),大的树不会有大的生长,只是保持虫害的关注。其实还有个比喻,就是把浓的用水冲,直到平均溶度为止,再寻找下一个高浓度。对每一份的投入要考虑投入在各个部分产生的收益是否最大,从短期看如何,长期怎样?挑肥拣瘦,就是同等投入追求更高产出的过程。这一部分涉及到量化和度的问题。
识别机会就是比较创造性的活动了,一般人很难做到,因为出发点和受过的训练不一样,总之呢,是需要通过不断的商业训练以及知识补充完善决策的背景。
预测呢,很大程度上是量化哪个是肥的,哪个是瘦的,不扯。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31