
大数据告诉你A股的秘密规律
1、收盘前上涨概率较高
统计数据表明,2009年1月至2015年9月期间,对比指数每五分钟的涨跌幅发现,午盘收盘前和全天收盘前,市场呈现较高概率的上涨,上涨概率高达60.3%和79.1%。
尾盘上涨现象与市场交易机制有较大关系,例如尾盘机构集中建仓、以及大宗交易的影响。但综合而言,对该现象的产生,目前尚没有完美的解释。
2、周一上涨概率大
统计每周的交易时间发现,周一上涨的概率和幅度最大。分段统计后发现,牛市期间,股市在周一上涨的幅度较大,而熊市中这种现象不明显。
“周一更容易上涨现象”在美国等成熟市场则并不明显,这很可能是由于成熟市场投资者情绪化不明显造成的。
周一出现极端涨跌幅的概率较高,这也与市场预期有关。例如投资者未预期到的周末市场数据和突发事件出现,或者预期落空带来的市场波动,在我国以散户为主的市场中,这种市场情绪波动更大。
统计月度数据发现,我国资本市场的上半月效应明显。而这种现象,与SHIBOR短端利率上半月较低的统计规律遥相呼应。
3、四月份要卖
“Sell In may and goaway”是一句广为流传的股市谚语,指的是股市在经过5月份后,市场就开始疲软,投资者在5月就可以获利了结。
通过随机测算上证综指的投资收益率:在每年任意时间买入指数,在之后任意时间卖出获利。发现年初买入、四月卖出获得正收益的概率最大。同时对比美国标普500指数,此期间交易带来的正收益概率也是最大的。
同时,美国的长期投资价值凸显,从年度随机投资收益的分布来看,均显示最长时间的持股,投资收益最高。对比标普500的指数的长期走势,发现标普500指数的价值是通过时间来检验的,持有时间越长,收益越高。
如果从月度涨跌幅的角度去看市场,上证综指和标普500指数均在上半年取得比较好的正收益,上涨的概率较高,而进入6月份后,市场的回报率和上涨概率均下行。
4、牛市波动增强
用两种方法来表示股票市场的波动,日内分钟收益率的标准差和开盘收盘价格波幅。
从日内分钟数据的标准差来看,在上证综指的阶段性顶点时,市场的波动显著增强,而这种现象在市场趋势性上涨的尾端更为明显。
从开盘收盘价格的波幅来看,波动带来的规律并不如上一种方式明显。
但对开盘收盘的价格进行了策略化处理后,回测其效果即:高开买进、低开卖出的双向操作。
回测结果显示,这样的策略长期表现要好于指数,但其效果存在失效期。用同样的方法测试了沪深300股指期货主力合约,策略失效同样存在,其长期效果尚可,年化回报率为12.2%。
5、春节前后上涨概率大
每当长假来临,持币过节还是持股过节的问题,都会备受投资者关注。
研究结果表明,在节前五个交易日,节后七个交易日里,上证综指表现较好。在迄今为止的22个春节前后,上证综指上涨次数为18次,上涨概率高达81.81%,涨跌幅的中值为3.19%,均值为3.72%。春节效应比十一效应更加明显,持续时间更长、平均上涨幅度更大。
在十一长假之前的三个交易日和假日之后的两个交易日,上证综指表现较好。在16次十一长假前后,上证综指有11次上涨,上涨概率为68.75%,指数涨跌幅的中值为1.87%,均值为1.05%。由此可见,在十一假日前后,指数上涨的概率较大,十一效应在A股市场中较为明显。
整体而言,我国的假期效应明显,尤其是春节效应,其持续时间和涨幅都比较高。
统计标普500指数的圣诞节效应,发现同样存在节日效应,尤其是在圣诞节之后,市场表现相对较好。
6、均线系统仍有效
技术分析在我国股票市场应用依然较为广泛,而技术分析的有效性,也是广大投资者争论不休的事情。
回测结果显示,在多数发展比较完善的资本市场,例如美国,日本、英国、法国,均线系统下的技术分析已经失效,而新兴市场国家和地区依然有效,而且德国DAX30指数有效性也较强。
值得一提的是,双均线系统的有效期,比单均线有效期要长久一些,或许这暗示着技术分析也要进行不断的演化,以适应市场的发展。
7、7倍PE肯定见底
资本市场有其自身规律,也有着估值的上下限。“树不会长到天上去”,脱离资本市场规律的事情不可能长久。
8、低价股收益率最高
对比A股的不同市场风格指数发现,在A股中,低估值个股,包括低市盈率和低市净率指数,长期走势均好于中、高估值品种,且其长期收益率要高于上证综指。在资本市场的长线低估值走势较好。
9、新股上市第一年收益欠佳
由于我国资本市场的结构和上市制度,导致上市公司在上市前报表的盈利能力较高,而一旦上市,其整体盈利能力开始下滑。
统计前五年上市公司的RoE分布表明,随着上市时间的延长,低盈利能力的公司开始增加,收益率的众数开始向较低的RoE水平倾斜。
对比上市公司不同年限的投资价值,上市第一年的投资收益并不好,其后明显好转。
10、金融板块行情独立
从行业的月度收益率出发,寻找行业之间的联动性。
数据显示,金融行业与其他行业的相关性最小,而在每个月上涨前五名的行业中,银行业出现的次数最多。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18