
不养数据的企业将死在大数据的路上
养孩子大家不陌生,养数据比养孩子可麻烦多了:费心、费力、费钱。养孩子只是自己家里面的事情,而养数据不仅仅是一个公司的行为,有时候还需要去养异业合作的客户的数据,甚至去养生态圈的数据。
孩子不养不成材,数据不养也长不大,后果是数据缺失,垃圾数据满天飞。
我们熟悉数据分析,但是养数据这三个字儿对很多人来说是陌生的。百度了一下:“养数据”只有58.5
万条网页(一个月前只有25.6万),而“数据分析”却有5470万条网页,侧面说明了养数据的重视度远远不够的。
“养数据”甚至没有百度百科的解释,百度指数中也没有收纳这个词,并且百度养数据出现的是让我哭笑不得的如下内容。
养猪、养鱼....什么鬼!
离开了数据谈决策是耍流氓,不主动养数据谈什么数据?数据不会自己从天而降,有些数据即便你有钱也买不到。养数据就如养孩子一样,真的是一把屎一把尿的拉扯大的。不多说了,没有孩子的人是没办法体验养数据之苦的。
数据分析这几年被空前的重视,我自己感觉也是这样,这两年找我做数据化管理的培训和咨询的企业尤其多。这些企业一上来就是数据分析技巧,数据分析理论,数据化决策等等。而看他们提供给我数据则是不忍目睹,各种数据缺失,各种不规范,数据源质量一塌糊涂。如顾客名字叫坑爹,会员年龄100多岁,手机号135790248*......
养数据必须被企业的管理层和业务单位重视起来,扯皮不是理由,懒惰不是借口。作为数据单位有义不容辞的责任去控制数据质量和内容。只有数据质量和数量提升了,企业才可以谈什么数据驱动,DT时代。否则,请住嘴。
养数据的典范:雅昌的故事
雅昌是一个深圳的企业,93年成立的时候只是一个搞印刷的小作坊,而现在它被大众熟悉是因为我们的奥运会、世博会等的宣传材料是他们印刷的,而且雅昌艺术品拍卖网是国内最权威的艺术品拍卖门户网站。
它有9万多位艺术家的电子资料,1200万艺术品展览和拍卖的数据,3500多万件艺术品资料。雅昌就是一个艺术品的大数据库,世界上所有的拍卖行都必须要和它合作,因为有些艺术品只有它才有电子版的资料。
一切的一切只有一个关键词:养数据!
雅昌的老板很有养数据的意识,当年还是一个小作坊的时候,他就要求员工必须要把客户的印刷资料作为电子版本保存起来。大家可以想一想,那可是90年代,还是磁盘存储的年代,存储还是以MB为单位而不是现在流行的G。
所有客户的电子数据就这样被保存起来了,直到后来数字存储技术的发展,他们才把所有收集的数据分门别类的归档。于是,别人没有的电子资料雅昌有,老一代艺术家作品只有雅昌有电子版......
随着雅昌自己印刷业务的增长,它收集的数据也越来越多,数据就是这样被养大了。再后来雅昌顺理成章的“跨界”艺术品门户。
养数据是苦逼的工作,有时候甚至短期看不到未来,但是坚信必有收获。大的方面来说养数据包含三方面:
完善数据结构,把数据养大
1、企业数据库中有的字段必须要全部收集起来,尽可能的不要留白。
2、有用但是现在没有的数据必须想办法收集起来,例如传统零售的客流数据,客流动线数据。
3、暂时用不到的数据,本着先收集再应用的原则。对于一个零售门店来说最有用的数据可能不是顾客的购买数据,反而是顾客“不”购买的数据,清楚了顾客为什么不购买对于企业的商品规划,营运流程再造是有巨大好处的。就如飞机修理厂为了解飞机哪个部分最容易被击中,派人统计飞机出故障的部位。发现主要问题在机翼的部分,那里弹孔最多,于是他们决定把机翼部分加强。其实在战场中被击落没有飞回来的飞机数据才是最有意义的。
4、跨界合作得大数据。线上企业要了解线下就必须要和传统零售合作,打通各种数据孤岛。
提高数据质量,把数据做精
有数据但没质量是企业数据的通病,原因不外乎基层数据录入太随意,定义不清楚,网络硬件等影响原因。比如有些服装专卖店的员工平时很忙没时间将订单录入系统(百货店铺品牌方的系统和商场收银是分离的),于是店长就每天下班前才将所有的当日订单合并到一起录入进销存系统。这样的危害是巨大的。
1、进销存系统变成了单纯的财务对账系统,说好的数据分析根本无从下手;
2、没办法分析顾客的客单价和连带率(平均顾客购买数量),因为n张订单被人为的合并了;
3、没办法分析店铺按时段的成交规律,所有订单都只是显示一个时间点。
提高数据质量这种事情只能是企业从营运端入手严防死守,前提是重视!不难!
要有数据入库的意识
数据库数据库就是尽可能的让数据在数据库中,而不是在excel中。企业很多数据其实是在excel中的,比如促销活动的开始时间、结束时间、活动内容等。还比如店铺在商场的位置,楼层,店铺级别等信息也是在excel中而不是在系统中的。
别让一些基础数据躺在excel中,一定要想办法放到数据库中去。一是安全,而是更利于数据的场景化,否则就只是一些干巴巴的数字。
养数据是一个长期艰巨的工作,并且得不到企业管理层重视,也得不到基层员工的积极配合。但是必须要克服困难,上!
两个建议:
1、养数据必须基于5年后的数据需求来规划布局;
2、养数据必须结合业务场景来思考。
一个企业在养数据的层面上谋划越深越前瞻性,才可能在数据驱动营运,驱动决策的路上越走越顺
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13