京公网安备 11010802034615号
经营许可证编号:京B2-20210330
汽车电商中的大数据应用:挖掘与延伸
人类历史长河中所有信息总量加在一起还没有当下两年的多,而且这个数据量还在以两年时间增速翻翻的速度在飞速发展,互联网给我们带来的剧变已经非常明显,大数据时代即将到来。商业智能BI和商业分析BA将得到大发展,大数据即可以计算出股票的涨落,也可以计算出美国总统大选结果,还可以计算出你明天发生车祸的几率。大数据在汽车电商中的应用也将得以突显,当然,大数据的收集和分析、挖掘乃至于真正的应用还需要从底层开始,才能让数据的金矿开掘全面推进。
在人类的历史长河中,直至工业革命才是一个分水岭,这之前人类的人均GDP一直停留在500美元左右,所谓的马斯洛陷阱不断发生。而工业革命之后个体的价值剧增,直至当下的人均GDP达到几万美金,这是分工协作提升效率创造出来的价值。当下是互联网时代,连接同样可以产生价值,一个蜜蜂是愚蠢的,而蜂群却是智能的,建立你的社群让智慧产生价值倍增,让大数据在商业平台中的无数个体的价值聚合产生更大的价值,就是大数据时代应该思考和应用的方向。
当然,大数据也是被误解的最深的一个专业词汇了,主要原因还是这个词本身翻译就已然南辕北辙了,数据的价值并非仅仅只在大上,冗余 数据再大也毫无价值。大数据真正的价值在它的深度、宽度和广度的取向上。比如汽车信息中的深度如这辆车的状况,行驶里程,维修保养情况,通过智能盒子OBD获取到的它行驶途中的胎压异常等等数据,那么宽度就如这个车主的驾驶习惯,行车路线和路况信息等,而广度就是要延伸为车主的个人嗜好和消费习惯了。经过深度挖掘的这些数据的聚合,也就可以实现智能商业,也就是所谓的BI,而绝非简单的车辆型号,年限和号牌,车主联系方式等低级数据叠加起来的冗余数据,这样的数据再大也不会直接产生价值,是需要深度挖掘才会有价值,也是汽车电商平台在数据整合和收集方面所应该运营的方向。
传统企业的人没有互联网思维,非但不觉得互联网好,还反而认为对它们是障碍,就拿P2P模式的汽车金融来说,互联网直接触及他们的利益奶酪,他们如遇洪水猛兽般抵制。做线下产品渠道后市场的更是抵制互联网,对外说做的互联网,其实骨子里是在抵制。所以O2O或O+O最难线上和线下对接,那么大数据对于他们也就无从实现了。
再来看看大数据在汽车保险上的应用案例,汽车后市场的大数据应用,其实保险公司早有在做,而且很简单,那就是通过OBD盒子收集车主的驾驶行为数据,如果一个人从来不违章,那么给他的保险就可以打很低的折扣,如果对于经常违章发 生车祸的车主,那么就可以拒保,不仅增进投保数量更能增进保险的质量。再者就是车辆的使用时间和闲置时间,可以做分时租赁提供数据。驾驶行为是很容易获得 的,而通过行车记录仪拍摄的实时路况的大数据就更有价值,如果一个城市里有几十万甚至上百万辆车安装了你的行车记录仪,且可实时上传所拍摄到的路况信息到 云端,那么这个城市的所有路况信息的大数据就近在眼前了,他对其他车主也是最具价值,同时由云端分享给需要实时路况信息的车主,甚至于未来预设导航目的地 和行车路线后,预测下个时段的路况信息的数据结果都是可以通过云计算得出一个几乎真实的结果。
在大数据的应用层面,在数据库中分散、独立存在的大量数据对于业务人员来说,只是一些无法看懂的天书。业务人员所需要的是信息,是他们能够看懂、理解并从中受益的抽象信息。此时,如何把数据转化为信息,使得业务人员(包括管理者)能够充分掌握、利用这些信息,并且辅助决策,就是商业智能主要解决的问题。如何把数据库中存在的数据转变为业务人员需要的信息?大部分的答案是报表系统。简单说,报表系统已经可以称作是BI了,它是BI的低端实现。国外的企业,大部分已经进入了中端BI,叫做数据分析。有一些企业已经开始进入高端BI,叫做数据挖掘。而我国的企业,大部分还停留在报表阶段。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29