
对于常规的多重模型(multiple model)拟合,最基本的函数是lm()。 下面是调用它的方式的一种改进版:
>fitted.model<- lm(formula, data =data.frame)
例如
> fm2 <- lm(y ~ x1 + x2, data = production)
将会拟合 y 对 x1 和 x2 的多重回归模型(和一个隐式的截距项)。
一个重要的(技术上可选)参数是data = production。它指定任何构建这个模型的参数首先必须来自 数据框 production。 这里不需要考虑数据框 production 是否被绑定在搜索路径中。
广义线性建模是线性模型在研究响应值的非正态分布以及非线性模型的简洁直接的线性转化 时的一种发展。 广义线性模型 是基于下面一系列 假设前提的:
eta = beta_1 x_1 + beta_2 x_2 +...+ beta_p x_p,
因此 x_i 当且仅当 beta_i 等于0时对 y 的分布没有影响。
f_Y(y; mu, phi) = exp((A/phi) * (y lambda(mu) - gamma(lambda(mu))) + tau(y, phi))
其中 phi 是度量参数(scale parameter)(可能已知),对所有观测 恒定;A 是一个先验的权重,假定知道但是 可能随观测不同有所不同;mu是 y 的均值。 也就是说假定 y 的分布是由 均值和一个可能的度量参数决定的。
mu = m(eta), eta = m^{-1}(mu) = ell(mu)
该可逆函数 ell() 称为 关联函数(link function)。
这些假定比较宽松,足以包括统计实践中大多数有用的统计模型, 但也足够严谨,使得可以发展计算和推论中一致的方法( 至少可以近似一致)。 读者如果想了解这方面最新的进展,可以 参考 McCullagh & Nelder (1989) 或者 Dobson (1990)。
R 提供了一系列广义线性建模工具,从类型上来说包括 gaussian, 二项式, poisson, 反 gaussian 和 gamma 模型的响应变量分布以及 在响应变量分布没有明确给定时的逆似然(quasi-likelihood)模型。 在后者,方差函数(variance function) 可以认为是均值的函数,但是在另外一些情况下, 该函数可以由响应变量的分布得到。
每一种响应分布允许各种关联函数将均值和线性预测器关联起来。 这些自动关联函数如 下表所示:
Family name | Link functions |
---|---|
binomial | logit,probit,log,cloglog |
gaussian | identity,log,inverse |
Gamma | identity,inverse,log |
inverse.aussian | 1/mu^2,identity,inverse,log |
poisson | identity,log,sqrt |
quasi | logit,probit,cloglog,identity,inverse,log,1/mu^2,sqrt |
这些用于模型构建过程中的响应分布,关联函数和各种 其他必要的信息统称为 广义线性模型的族(family)。
既然响应的分布仅仅通过单一的一个线性函数依赖于 刺激变量,那么用于线性模型的机制同样 可以用于指定一个广义模型的线性部分。 但是族必须以一种不同的方式指定。
R 用于广义线性回归的函数是glm(), 它的使用形式为
>fitted.model<- glm(formula, family=family.generator, data=data.frame)
和lm()相比,唯一的一个新特性就是描述族的参数family.generator。 它是产生函数和表达式列表的函数名字。这些函数 用于定义和控制模型的构建与计算过程。 尽管开始看起来有点复杂, 但它们非常容易 使用。
这些名字是标准的。程序给定的族生成器可以参见 Families 列表中 的“族名”。当选择一个关联函数时, 该关联函数名和族名可以同时在括弧里面作为 参数设定。在拟(quasi) 家族里面,方差函数也是以这种方式设定。
一些例子可能会使这个过程更清楚。
命令
> fm <- glm(y ~ x1 + x2, family = gaussian, data = sales)
和下面的命令结果一致。
> fm <- lm(y ~ x1+x2, data=sales)
但是效率上,前者差一点。注意,gaussian 族没有相关参数, 因此它不提供关联函数的。 如一个问题需要用非标准关联函数的 gaussian 族, 那么只能采用我们后面讨论的拟族。
考虑 Silvey (1970) 提供的一个小的例子。
在 Kalythos 的 Aegean 岛上,男性居民常常患有 一种先天的眼科疾病,并且随着年龄的增长而变的愈显著。 现在搜集了各种年龄段岛上男性居民的样本,同时记录了盲眼的数目。 数据显示如下:
年龄: | 20 | 35 | 45 | 55 | 70 |
No. 检测: | 50 | 50 | 50 | 50 | 50 |
No. 盲眼: | 6 | 17 | 26 | 37 | 44 |
我们想知道的是这些数据是否吻合 logistic 和 probit 模型, 并且分别估计各个模型的 LD50,也就是一个男性居民盲眼的概率 为50%时候的年龄。
如果 y 和 n 是年龄为 x 时的盲眼数目和检测 样本数目,两种模型的形式都为 y ~ B(n, F(beta_0 + beta_1 x)), 其中在 probit 模型中, F(z) = Phi(z) 是标准的正态分布函数,而在 logit 模型 (默认)中, F(z) = e^z/(1+e^z)。 这两种模型中, LD50 = – beta_0/beta_1 ,即分布函数的参数为0时 所在的点。
第一步是把数据转换成数据框。
> kalythos <- data.frame(x = c(20,35,45,55,70), n = rep(50,5), y = c(6,17,26,37,44))
在glm()拟合二项式模型时,响应变量 有三种可能性:
我们采用的是第二种惯例。我们在数据框中 增加了一个矩阵:
> kalythos$Ymat <- cbind(kalythos$y, kalythos$n - kalythos$y)
为了拟合这些模型,我们采用
> fmp <- glm(Ymat ~ x, family = binomial(link=probit), data = kalythos) > fml <- glm(Ymat ~ x, family = binomial, data = kalythos)
既然 logit 的关联函数是默认的,因此我们可以在第二条命令中省略该参数。 为了查看拟合结果,我们使用
> summary(fmp) > summary(fml)
两种模型都拟合的很好。为了计算 LD50,我们可以 利用一个简单的函数:
> ld50 <- function(b) -b[1]/b[2] > ldp <- ld50(coef(fmp)); ldl <- ld50(coef(fml)); c(ldp, ldl)
从这些数据中得到的年龄分别是43.663年和 43.601年。
在 Poisson 族中,默认的关联函数是log。在实际操作中, 这一族常常用于拟合计数资料的 Poisson 对数线性模型。 这些计数资料的实际分布往往符合二项式分布。 这是一个非常重要而又庞大的话题,我们不想在这里深入展开。 它构成了非-gaussian 广义模型内容 的很大一部分。
有时候,实践中产生的 Poisson 数据在对数或者平方根 转化后可当作正态数据处理。 作为后者的另一种选择是,一个 Poisson 广义线性模型可以通过下面的例子 拟合:
> fmod <- glm(y ~ A + B + x, family = poisson(link=sqrt), data = worm.counts)
对于所有的族,响应变量的方差依赖于均值并且拥有 作为系数(multiplier)的尺度参数。 方差对均值的依赖方式是响应分布的一个特性; 例如对于poisson分布 Var(y) = mu。
对于拟似然估计和推断,我们不是设定精确的响应分布而是 设定关联函数和方差函数的形式。因为关联函数和方差函数都依赖于均值。 既然拟似然估计 和 gaussian 分布使用的技术非常相似, 因此这一族顺带提供了一种用非标准关联函数或者方差函数 拟合gaussian模型的 方法。
例如,考虑非线性回归的拟合 y = theta_1 z_1 / (z_2 – theta_2) + e 同样还可以写成 y = 1 / (beta_1 x_1 + beta_2 x_2) + e 其中 x_1 = z_2/z_1, x_2 = -1/x_1, beta_1 = 1/theta_1, and beta_2 = theta_2/theta_1。 假如有适合的数据框,我们可以如下 进行非线性拟合
> nlfit <- glm(y ~ x1 + x2 - 1, family = quasi(link=inverse, variance=constant), data = biochem)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17