
大数据分析处理的最终目标是有效用信息
大数据在业内并没有统一的定义。不同厂商、不同用户,站的角度不同,对大数据的理解也不一样。麦肯锡报告中对大数据的基本定义是:大数据是指其大小超出了典型数据库软件的采集、储存、管理和分析等能力的数据集合。赛迪智库指出,大数据是一个相对的概念,并没有一个严格的标准限定多大规模的数据集合才称得上是大数据。事实上,随着时间推移和数据管理与处理技术的进步,符合大数据标准的数据集合的规模也在并将继续增长。同时,对于不同行业领域和不同应用而言,“大数据”的规模也不统一。
虽然“大数据”直接代表的是数据集合这一静态对象,但赛迪智库经过深入研究认为,目前所提到的“大数据”,并不仅仅是大规模数据集合本身,而应当是数据对象、技术与应用三者的统一:
1.从对象角度看,大数据是大小超出典型数据库软件采集、储存、管理和分析等能力的数据集合。需要注意的是,大数据并非大量数据简单、无意义的堆积,数据量大并不意味着一定具有可观的利用前景。由于最终目标是从大数据中获取更多有价值的“新”信息,所以必然要求这些大量的数据之间存在着或远或近、或直接或间接的关联性,才具有相当的分析挖掘价值。数据间是否具有结构性和关联性,是“大数据”与“大规模数据”的重要差别。
2.从技术角度看,大数据技术是从各种各样类型的大数据中,快速获得有价值信息的技术及其集成。“大数据”与“大规模数据”、“海量数据”等类似概念间的最大区别,就在于“大数据”这一概念中包含着对数据对象的处理行为。为了能够完成这一行为,从大数据对象中快速挖掘更多有价值的信息,使大数据“活起来”,就需要综合运用灵活的、多学科的方法,包括数据聚类、数据挖掘、分布式处理等,而这就需要拥有对各类技术、各类软硬件的集成应用能力。可见,大数据技术是使大数据中所蕴含的价值得以发掘和展现的重要工具。
3.从应用角度看,大数据是对特定的大数据集合、集成应用大数据技术、获得有价值信息的行为。正由于与具体应用紧密联系,甚至是一对一的联系,才使得“应用”成为大数据不可或缺的内涵之一。
需要明确的是,大数据分析处理的最终目标,是从复杂的数据集合中发现新的关联规则,继而进行深度挖掘,得到有效用的新信息。如果数据量不小,但数据结构简单,重复性高,分析处理需求也仅仅是根据已有规则进行数据分组归类,未与具体业务紧密结合,依靠已有基本数据分析处理技术已足够,则不能算作是完全的“大数据”,只是“大数据”的初级发展阶段。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04