京公网安备 11010802034615号
经营许可证编号:京B2-20210330
五年后,大数据会怎样改变我们的生活
全球大数据和数据分析领导企业Teradata天睿公司(纽交所上市公司,2007年从母公司 NCR 公司剥离独立)每年举办一次全球用户大会(Teradata Partners),我们讨论大数据不过三五年的事情,但是这场业内规模最大的数据分析峰会已经开了30年了。你能想到想不到的最资深的行业、商业智能、数据仓库和大数据专家,而且全球大名鼎鼎的数据驱动型企业的用户代表也都在这儿了。
会议间隙,记者采访了Teradata天睿公司首席执行官兼总裁Mike Koehler、首席技术官Stephen Brobst,以及大中华区首席执行官辛儿伦(Aaron Hsin),他们从不同方面分享了大数据是怎样改变和即将改变我们的生活,尤其是商业生活。
记者:中国公司已经开始从大数据中获得立竿见影的商业收益吗?
辛儿伦:其实,不管是立竿见影,还是潜移默化,就像本届大会的主题Breaking Big所阐述的一样,我们要积极拥抱大数据,在应用中要“打破束缚和限制”,不管是企业还是个人应该探索和追求“创新、差异化、勇气、重大进展和卓越表现。”
所以,企业要在大数据上获得收益,就必须坚持创新和追求创新,不管在技术上寻找突破,还是从业务流程、组织架构、企业的分析文化上,都要进行积极的创新。在国内,有十多个行业的客户选择Teradata做了很多创新的项目,包含政府与公共服务、地铁、交通运输、航空、通信行业、银行、保险、证券、物流、快递行业、制造行业、汽车、零售、电子商务、电力能源等行业。
比如在国内的快递行业,我们帮助一家领先的快递公司建立其数据收集和分析系统,协助完善其业务流程。通过找到它们业务流程中的“跑冒滴漏”环节,将业务环节的各种数据,例如扫描数据、车队的运营数据等跨部门的数据整合起来,改善计费流程系统,实现关联分析等高级分析功能,杜绝了以前流失的收入。据这家快递公司测算,在项目结束的第一年,如果假设部署Teradata解决方案和服务的费用为1块钱,那客户由此带来的收益就达到80块钱,这就是非常显著的改变。
在保险行业,大部分保险公司都以为客户会在周末查询有关保险的相关信息,所以投放网络广告都选择周末时段。其实,通过我们的大数据分析证明,其实应该是周一!就是大家最忙的工作日的第一天。所以,通过大数据分析,将广告资源投放在适合的时间、适合的人群就是帮助企业获得真正的受益。
针对营销方面,我们经常会接到各种“骚扰”的推销电话,其实这就是在不正确的时间、不正确的地点、用不正确的方式来提供给不恰当的人。企业应该基于客户的数据分析,用更加智能的方式来服务,我认为这种不精确的服务应该会越来越少。
其实,不管是已经在驾驭大数据中受益的企业,还是那些刚刚开始征程的组织,很多企业曾经面对大数据项目的投资时都出现过犹豫、徘徊。当然,这就需要更大的勇气支持。Teradata以及广大客户的调查已经看到,我们是时候积极行动了。我们也理解,文化上的转变可能比技术和分析流程上的转变历时更久,但是我们一直强调,大数据从小做起,相信企业也能很快看到大数据的价值,看到数据分析在商业变革中带来的不可替代的驱动力。
记者:大数据在技术层面的发展已经有了很大的突破,到底有哪些因素影响到大数据的技术进步真正投入到应用当中去?
Stephen Brobst:人们只是假装热爱技术进步,哈哈!实际上,人类希望看到的是一步步的改变,而不是翻天覆地的变化。
比如,像无人驾驶汽车技术早已存在,但是,现在直接让大众接受无人驾驶还是困难的,改变将会是循序渐进的。现在的汽车已经实现了自动泊车功能,这就是迈出了无人驾驶的第一步。无人驾驶更多是因为法规、监管、保险公司、律师之间存在的问题,现在还没有很快大规模应用。
另外,尽管人的生命非常珍贵,但你的汽车上的传感器数量比人身上的可穿戴传感器多的多。通过佩戴传感器,大数据可以提供很多健康方面的数据分析。例如根据你个人的基因状况,提供个性化的药物和治疗方案。这也是未来的一个发展趋势。但是很多人害怕,因为个人隐私的原因,不希望把自己的基因组数据放在大数据库里面。
在大数据领域,目前发展非常迅速而且想象前景最为丰富可能是物联网数据。Teradata公司认为大数据分析的未来图景就是“万物皆可分析”(Analytics of Everything)。此外,在Gartner公司的分析预测中,发布了2016 年可能影响企业的十大技术趋势,其中万物信息化以及物联网等技术入选。
其实,这些预测正是技术发展现实的写照。实现万物皆联网或者万物皆可分析,最主要的是靠传感器技术。在我们目前生活的时代,传感器技术结合大规模并行处理能力,使我们能够测量并整体分析几乎所有现象。先进的仪器使我们能够跟踪万物的变化,例如天气变化模式、汽车驾驶习惯、乃至快餐店冰箱的温度、医院里(或家里)病人的生命体征。将这些数据采集至数据库,并运用广泛的统计、分析及可视化工具对这些数据进行细致的分析。
正是由于这些传感器,我们的生活、工作中产生了新的数据源。例如,通过射频识别读取器,我们能够进行零售库存跟踪与控制、医疗测试采样跟踪、预防欺诈行为等;通过GPS定位跟踪器,能够进行车队管理和交通运输和货运管理;通过数据采集传感器,我们就能在制造业、环境保护、交通运输系统中采集到实时的数据用于分析。
但是,物联网之所以没有快速发展起来主要有三个原因:第一,我们还需要更加廉价的传感器。第二,物联网需要一个统一的标准,这点非常关键。例如,针对物联网数据的分析,我们发布了Teradata Listener软件,就是为了解决数据规格和实时分析的难度。第三,安全因素。物和物之间的联网涉及安全,如果有不良数据传送,比如说飞机、汽车、油泵等被黑掉就会造成事故,必须慎重。
记者:在您看来,五年之后大数据会让我们的日常生活发生哪些改变?
Mike Koehler:根据IDC最新的报告,全球联网设备的数量在2014年是103亿,发展到2020年将会增长到295亿。这将带来社会和人类生活的巨大变化。我们不会像分析师一样去预测未来,但是可以分享几个大数据应用的非常实在的例子。
未来五年,虽然有很多东西已经实现了互联,但是将还有更多的物品被连接到一起,导致新的大数据源不断涌现,同时带来新的洞察和前所未有的机遇。例如,在农业领域,大数据可以帮助葡萄酒庄酒庄,让他们自动控制给葡萄浇水、施肥的时间,甚至进行针对性的管理。
我们的每架飞机、每列火车和地铁、每辆车辆、甚至骑行的自行车等,都能够通过传感器实现互联,我们可以实时地了解到知道它们潜在的问题在哪里,解决方案是什么,怎样去进行维修等。
对当前和未来发展,大家虽然都认识到大数据的价值或者带来的改变,但是我更要强调大数据分析的价值!在一定程度上说,只是拥有数据并不能成为企业真正的竞争力,只拥有数据并不能给你的日常生活带来太多便利。Teradata公司的客户,美国全国保险公司客户管理副总裁Kathy Koontz 女士指出:"重要的不是数据,而是如何使用数据。企业必须改变它们的经营方式,学会从数据中洞察事实并做出反应,否则数据整理得再有条理,也没什么价值。"
通用电气公司首席执行官Jeff Immelt曾说,“今天,数据分析时代已经来临,数据分析不再是未来愿景。每家实业公司都将围绕数据与分析技术以某种方式进行变革。”所以,我们可以看出,数据和分析正在彻底改变各个行业,彻底改变消费者,并带来新的竞争对手,但更重要的是,数据和数据分析使得我们的社会开始了前所未有的转型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16