京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用SPSS进行相关分析的典型案例
相关分析,两个变量之间密切程度的一种常见统计分析方法,能够简单有效说明两变量间存在什么关系,这些关系的常见描述语句有:线性相关、正相关、负相关等。
某公司员工的基本情况,数据集含3列,分别为:性别、年龄、工资,现在希望了解员工年龄和工资水平之间的关系(企业人事部门的读者可关心一下)。
【SPSS相关分析过程】
1、菜单操作:分析、相关、双变量
2、结果
相关分析的原假设是两两之间不相关,现在sig=0.002,原假设不可能发生,即得出年龄与工资水平有极显著的相关关系,且随着年龄的增加,工资会逐渐下降,老无所养吧。这个结论苍白无力,即使不用统计分析,看看身边的人其实也能想差不多明白。
3、再提高一步
在探索性数据分析阶段,分组对比分析非常重要,在分组变量的细分之下,往往能够发现意想不到的结论。我们讨论一下不同性别的员工,其年龄和工资的关系,男女在这方面有区别吗?
(1)首先用性别变量将数据集拆分为男女两部分:数据,拆分文件
(2)继续进行相关分析步骤,结果如下:
可见,实际上是女性的年龄与工资水平有着极显著的负相关关系,而男性却不存在这样的关系,在实际工作生活当中,这个结论也基本符合实际。
表不如图,最能体现相关关系的图是散点图。
通过散点图,可以在相关分析之前对两者之间的关系做一个相对比较直观的判断,如果得到相关分析的验证,效果更佳。
1、相关分析属于数据分析流程前端的探索性分析,探究变量间关系及性质,其结果在于指导下一步采取何种方法,是数据挖掘之前的基础工作;
2、两两之间有相关关系,但不一定是因果关系,也可能仅是伴随关系,反过来,两两之间存在因果关系,那么两者之间必然相关;
3、相关分析之前,有必要搞清楚变量的类型,根据具体类型选择合适的相关系数。Pearson相关系数适用于两变量的度量水平都是尺度数据,并且两变量的总体是正态分布或者近似正态分布的情况,还有说法认为其样本量应大于30,可供参考,在这些条件之外的,考虑选择spearman系数或者kendall系数。
4、分组对比分析是发现问题的好方法;
5、散点图是相关分析的最直接有效的可视化方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30