
网络游戏的数据挖掘与数据分析
近日在一个学术论坛中听到了,北大光华商务统计及经济计量系副教授张俊妮,主题为“数据挖掘的应用案例”的演讲,结合网络游戏行业特点,简要思考一下数据挖掘与数据分析,希望遇到同行业中从事此领域工作的朋友,建立联系和交流。网络游戏行业随着规模的扩大和行业逐渐成熟,将会以具有技术含量和管理积淀形成核心竞争力,将对此领域长期关注和持续性思考研究。
基本原理流程:围绕数据建立 “商业理解”=“数据理解”-“数据准备”=“建模”-“模型评估”-(“商业理解”)-模型发布
数据管理体系的建立是一个长期的过程,其中数据质量的好坏起到相当重要的作用,网络游戏运营中将产生大量的未经梳理的数据,数据是分析的基础,与其他行业相比,网络游戏行业具有一些天然的优
1丰富的数据源,对象用户达到一定级别,所产生的数据种类多样,丰富而且具有持续性
2数据相对客观真实,采集和筛选方便,例如:“注册”“登陆”“游戏行为”等,都是数字化网络记录和管理
3数据信息与需求紧密联系,因果关系脉络清晰,网络游戏的各个环节通过数据信息的形式紧密联系,信息链条相对纯净,“噪音”少,环环相扣产生数据因果。
4信息化程度高,主要基于互联网的商业模式使得各运营环节都产生相关数据信息,从业人员普遍理解信息数据的重要作用,信息数据是企业核心资产和经营基础。
在与张教授的交流中,对于数据管理体系中的重要性,一致认为对于“商业理解”的重要程度超过其他学术和数据分析工具,在以往的案例中,团队组成包括“商业管理”“IT技术支持”“统计分析”等组成部分,一个项目实施期长达一年。数据体系将是一个反复实践的过程,不断随着具体情况的变化而休整和增加。
关于网络游戏的数据挖掘和数据分享,此前已经有较长一段时间的积累和探索,但在过程中所遇到的问题缺乏多角度的交叉验证,游戏是一个不断创新和变化的产业,游戏玩家的用户规模和行为规律呈现越来越复杂的局面,一个公司的数据管理体系的建立和完善需要整理通力合作和长期积淀,试从个人角度提出建立数据管理体系的流程和建议,由于缺乏实践参照,难免理想化和脱离实际,仅做参考。
一、数据积累
网络游戏运营的数据积累体现在多方面,从游戏用户的行为数据积累,到市场行销推广的数据积累,各种能够产生数据和数据之间的关联,进行长期持续性的积累。通过数据库或成熟的数据仓库产品,将各类数据有效规范管理,以备今后的数据体系应用。
二、观念培育
数据管理的观念在执行过程中逐渐培育,认识到数据对于企业运营的重要意义和积极作用,为今后建立数据管理体系制定长期可能的规划,长期渐进的思维理念。
三、理论和体系人员的准备
数据管理体系中,对于自身游戏运营的商业理解和理论准备是一个长期的过程,而体系人员是建立在对自身运营体系和行业发展方向深入认知的前提下,内部的广泛交流和有效沟通,形成良好的信息体系建立大环境。
四、渐进的体系实施
数据管理体系是企业的综合实力所决定,在正确的时间做正确的事情,根据企业发展的不同阶段状况,渐进式逐步推进信息数据管理体系的建立,不一定需要以某个固定的体系名称,而是以期达到实际效果,能够实现以数据辅助指导运营,不同的实施阶段有不同程度的效果。
网络游戏的数据挖掘与数据分析可以本着“不为名,只图实”的原则,能够对游戏运营管理有帮助,及时是简单的表格罗列筛选也是一种进步,不同程度的数据挖掘和分析产生不同的贡献。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17