京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的大变革
在云计算仍处于“云里雾里”而亟待落地的今天,IT的浩瀚天空中突然传来了天使的号角声——大数据时代来了!大数据,开启了一个彻头彻尾的变革年代,更开启了一个蕴含无穷多机会的年代。谁能够“号准”大数据时代的“脉搏”,谁就能够在全球IT业的新一轮角逐中独领风骚。
令人充满想象的大数据,究竟“大”在何处?
今天,我们再也不能用狭隘的视角来审视大数据了。因为今天的大数据,不仅体现为数据量的惊人增长,更前所未有地引入了正在不断扩展中的数据类型。从量的增长来看,IDC报告显示,未来10年全球大数据将增加50倍。而刚刚过去的2011年,就产生了1.8ZB(1.8万亿GB)的大数据,这相当于每个美国人按每分钟发3条微博的速度,不停发布2.6976万年。与此同时,社会上的各行各业,从电信、IT业,到金融、证券、保险、航空、酒店服务业等,地球上的各种存在,从每个人到每棵树、每朵花乃至每粒沙子,无一例外地都在成为大数据的生成者。在量和面上的双重积累,让我们不难想象和接受数据大爆炸的现实——2020年的全球数据使用量将达到35.2ZB(1ZB=10亿TB)。
犹如一座富矿的大数据,究竟该如何“开采”?
这是一个令人着迷的问题,因为与正确答案相伴的将是谁都渴望的巨大商业成功。当前,伴随着变革的发生,传统的互联网企业已经站在了大数据时代的最前沿。作为探索的先锋,他们能否笑到最后,是否会成为“先烈”?这一问题尽管很难回答,但至少为成功的觊觎者提供了充分的借鉴和参考。
作为后PC时代的四大巨头,Facebook、谷歌、苹果、亚马逊正在成为大数据的拥有者和使用者。在自觉或不自觉间,Facebook已然成为业界第一个生成大数据的“巨鳄”,而其他三巨头仍在努力中。苹果依靠操作系统和颠覆性的终端,正在努力打造大数据的生成之地;谷歌主要依靠操作系统、搜索引擎和“Google+”平台整合终端产品,以储备可以利用的大数据;亚马逊作为云计算的最早倡导者之一,则通过网络平台、云计算平台和阅读终端,期望建立起一个电子商务垂直领域的大数据汇集地。虽然巨头们的策略各有不同,但利用种种手段整合碎片化的数据进而加以利用的趋势,已经再明显不过了。
相比这四大巨头,电信运营商的探索才刚刚起步。“日内瓦的电信运营商,正在针对市民活动的可视化展开研究。”天云科技副总雷涛在近日举行的云计算大会云基地专场上指出,“通过在用户手机上安装传感器,就能够记录下大量的位置信息,从而使得市民活动可视化,这对建立一个智慧城市,进行人口规划、区域规划都具有重要意义。”事实上,一个个再简单不过的位置信息背后,隐藏着巨大的、待挖掘的价值,这个价值对于各行各业都具有关键的作用。例如,房地产开发商就很渴望知道高端用户最频繁出入的区域,而这些区域就是商业地产的最佳候选地。而除了位置信息外,电信运营商能够挖掘的信息和数据,仍有无穷无尽的空间,包括了用户喜好、消费能力等等。
在企业的自发行为以外,国家级的战略支持已经浮出水面。美国,作为ICT强国,嗅觉最为敏锐。2012年3月29日,奥巴马政府公布了“大数据研发计划”,目标在于改进当前人们从海量和复杂的数据中获取知识的能力,而这是美国继高速网络和超级计算中心之后的另一个重大科技项目。据悉,首批共有6个联邦部门宣布投资2亿美元,共同提高收集、储存、保留、管理、分析和共享海量数据所需核心技术的先进性,并形成合力,同时增加大数据技术开发和应用所需人才的供给。显然,先行一步的美国,已经把大数据当作了其ICT产业再度在全球崛起的重要契机。在找准了崛起的方向之后,富有行动力的美国,自然就会毫不拖泥带水地实施下去。
大数据,正在撬动全世界的神经,无论是国家、企业,还是每一个独立存在的个人,都将成为大数据时代的贡献者和受益者。但问题是,你准备好了吗?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11