
成为一名合格的互联网分析师必须的条件
先反推来看,分析师到底是干什么用的?
个人理解,分析的目的和价值,是为了决策。
决策又分很多,是发掘市场服务投资,还是分析对手竞争策略,抑或发现新趋势储备前沿技术,还是具体到数据挖掘协助运营。 不同重点,可能对分析师能力经验和知识结构、人格素养要求都侧重不同。
从核心能力来看, 一是商业洞察力, 二是个人的组织影响力。
什么人有深刻的洞察力?这命题又挺大。是否掌握行业规律、产业格局、技术发展趋势、 商业竞争要素这些宏观和结构性知识和案例就可以?但如果没有细致对产品设计、技术资源投入、运营手段、研发管理这些生产层面经验和项目储备,又会导致想法和逻辑不严谨或难以落地。
组织影响力? 通常中大型公司才会出现分析师这样的职位。 没有soft skill、演讲能力, 没有政治素养和一定的个人魅力,就没法帮助分析结论推导决策的过程。
还 有一点,互联网产品和传统行业产品的一个本质区别,是用户驱动的高速变更迭代的产品。对于用户细分人群画像分析和需求挖掘、预测能力,也是互联网分析师水 平差异的重要表现。有一本书叫《小趋势》,谈美国总统竞选时,分析师如何针对细分人群的用户特征和心理动机制定策略,就是一个鲜活的案例。
这个问题有点大也有点模糊。
互联网分析师是一个很宽泛的概念,大致分为三种:一是在市场/行业研究机构做分析师,二是在大的公司战略部做分析师,三是在投资机构(VC/投行)做分析师。
限于我个人的经验,主要谈一谈前两种。
先明确一个点,互联网分析师的产品是报告(或观点),判断一个互联网分析师好坏的唯一标准就是:是否能产出高价值的报告(或观点)。
市场研究机构分析师最主要的工作是撰写行业研究报告,而行业研究报告的最主要功能个人觉得是:(1)在对行业现状和趋势充分分析的基础上,准确判断业务吸引力(要不要做和做什么);(2)研究各个环节的关键成功要素供企业经营参考(做什么)。
公司战略部的分析师有一部分职能也是撰写行业研究报告,但是在这个基础上,还要结合公司的资源和优劣势制定商业策略。
总体而言,个人觉得一个好的互联网分析师需要从如下几个方面努力:
1.商业洞察力。
能 够准确判断行业走势,能够找到新的机会,能够抓住业务关键点...培养商业洞察力的基础是具备丰富的行业知识(包括市场、技术、产品甚至关键人员等等), 熟练掌握行业分析的一些方法,但在这个基础之上还要靠个人的不断总结和领悟——因为做行业分析往往不是按照某个固定的流程解决某个确定的问题,而是首先需 要分析师去提出很有价值解决的问题并解决他,而提出问题对商业洞察力的要求是很高的。据我了解,有深刻商业洞察力的分析师(和其他从业人员)都是很少的。
总 体而言,在公司内部做分析师对商业洞察力要求更高一些,尤其是在领先的公司内部做分析师,因为公司的管理层对业务已经非常了解,你对业务的洞察力要超过管 理层的预期才算合格。而市场研究机构的商业模式往往是为不太懂行业的企业和个人提供咨询服务,所以对商业洞察力的要求可能会相对较低。
2.人脉和圈子。
这一点对在市场研究机构做分析师的童鞋更为重要。没有深厚的人脉,分析师的很多工作都没法开展(比如信息收集等等),在行业里的影响力也出不去,最终难以成为一个优秀的分析师。
对在企业里做分析师的童鞋而言,也要在自己的公司里有一个圈子,这样在开展研究的时候往往事半功倍。
3.产品爱好者。
这可能是互联网行业分析师和其他行业分析不一样的地方。互联网行业总体而言还是一个产品为王、用户为王的行业,对产品的热爱会让你更准确的判断行业的走势,如果你不热爱产品,不分析用户,只是人云亦云,是不可能做出出色的报告的。
4.其他。
比较好的演讲能力,撰写PPT的技巧。
另外,要成为一名好的分析师需要能调动很多资源,如果你能本着一种很好的助人和服务意识,能够整合已有的资源,尽量的去帮助这些值得你帮助的人,然后去发展更多的资源并形成良性循环,你的工作就会非常的得心应手。
我感觉互联网行业的分析师还需要一些特质,比如对用户体验和产品的把握。
这 个问题还需要进一步细化,作为分析师要有自身的定位,是战略分 析、用户分析、运营分析、市场分析还是产品分析,不同的定位能力要求不一样,我说互联网分析师对产品分析可能有所倚重也是因为互联网企业的核心可能就是产 品,战略、商业模式等都附着于产品,很多互联网企业的成功源于一款产品的成功。当然,现在出现的平台化趋向导致互联网不再是一个个零散的产品,而是一个蛛 网似的局,这时以合纵连横为特征的竞合战略布局成为更高阶的分析对象,但是...且慢,颠覆这布局的敌人可能没有一个旅的军队,只是带着一把快刀,白光一 闪,直插你心脏,所以即使你定位为战略分析师,也万万不能失去对用户体验、产品的感觉。
最终,一个理想的互联网分析师必须洞察人性...所谓人性,难道不就体现在一个个小小的动作中么?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04