京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一篇文章学会用SPSS进行因子分析
文 | 数据小兵
因子分析已经被各行业广泛应用,各种案例琳琅满目,以前在百度空间发表过相关文章,是以每到4至6月,这些文章总会被高校毕业生扒拉一遍,也总能收到各种魅惑的留言,因此,有必要再次发布这经典案例以飨读者。
什么是因子分析?
因子分析又称因素分析,传统的因子分析是探索性的因子分析,即因子分析是基于相关关系而进行的数据分析技术,是一种建立在众多的观测数据的基础上的降维处理方法。其主要目的是探索隐藏在大量观测数据背后的某种结构,寻找一组变量变化的共同因子。
因子分析能做什么?
人的心理结构具有层次性,即分为外显和内隐。但是作为具有同一性的个体来说,内隐的方面总是和外显的方面相互作用,内隐方面制约着外显特征。所以我们经常说,一个人的内在自我会在相当程度上决定他的外在行为特征,表现为某些行为倾向具有高度的一致性或相关性。
反过来说,我们可以通过对个体进行系统的观察和测量,从一组高度相关的行为倾向(可观测)中,探索到某种稳定的内在心理结构(潜存在),这就是因子分析所能做的。
具体来说主要应用于:
(1)个体的综合评价:按照综合因子得分对case进行排序;
(2)调查问卷效度分析:问卷所列问题作为输入变量,通过KMO、因子特征值贡献率、因子命名等判断调查问卷架构质量;
(3)降维处理,结果再利用:因子得分作为变量,进行 聚类 或其他分析。
案例描述
高中大家都读过吧,那是一个以成绩论英雄的时代,理科王子、文科小生是时代标签。为什么我们会将数学、物理、化学归并为理科,其他的归并为文科,有没有数据支持?今天我们将用科学的方法找到答案。
100个学生数学、物理、化学、语文、历史、英语成绩如下表(部分),请你来评价他们。
这是一个有趣的案例,你可以客观的观测到每一科目的成绩,但你可以直接看到理科、文科的情况吗?6个科目的成绩是我们观测到的外在表现,隐藏在其中的公共因子你找到了吗?如果我们针对6科目做降维处理,会得到什么结果,拭目以待。
SPSS分析过程
6科目成绩作为6个原始变量,利用SPSS进行因子分析,具体步骤请参照各 因子分析教程 ,默认亦可,不在讨论范围之内。
公共因子命名:解释的清楚、有无实际意义
经过SPSS降维,由公因子方差表看出,默认提取两个公因子,能够解释差异的81%,似乎暗合文科和理科。
我们试图通过旋转后进行因子的命名与解释,这似乎一点也不难,因子1与语文、历史、英语三科最相关,均在0.8相关度以上,因子2与数学、物理、化学相关,也基本达到0.8以上,这正好与我们经常说的文科和理科不谋而合,没有理由不这样命名。
因子得分排序:综合评价
为公共因子合理命名之后,因子分析并没有结束,一般可以将因子得分作为变量,用于后续分析步骤。
本例:100名学生按照文科和理科因子得分进行排序,可以用(语文+历时+英语)及(数学+物理+化学)平均值验证因子得分排序是否合理,同时,也可以观测因子得分为负值时是否影响排序。
来自SPSS实战案例
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31